智能优化算法:斑点鬣狗优化算法-附代码

2024-06-18 07:49

本文主要是介绍智能优化算法:斑点鬣狗优化算法-附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

斑点鬣狗优化算法-附代码

文章目录

  • 斑点鬣狗优化算法-附代码
    • 1.算法原理
      • 1.1包围机制
      • 1.2 狩猎机制
      • 1.3 攻击猎物(局部搜索)
      • 1.4 算法流程图
    • 2. 算法结果:
    • 3.参考文献:
    • 4.Matlab代码地址:
    • 5.Python代码地址:

摘要:斑点鬣狗优化是印度塔帕尔大学 Dhiman 等[1]提出的一种新的优化算法,它主要模拟了斑点鬣狗的狩猎行为。斑点鬣狗依靠可信赖的朋友网络和识别猎物的能力来捕食猎物,这种狩猎方法可以在更短的时间内找到更好的解决方案。斑点鬣狗优化极大地增强了算法的自适应性,同时可以扩展到更高的维度,在优化问题中得以广泛应
用。

1.算法原理

​ 斑点鬣狗是非常聪明的群体社交动物,它们通过多种感官来识别亲属和其他个体,并对同一种族的关系进行了排名,群体中具有高地位的个体优先获得信任。由于这种生活习性,斑点鬣狗在群体狩猎方面具有非常高的成功率。斑点鬣狗种群的捕食机制包括搜索、包围、狩猎和攻击猎物四个过程。斑点鬣狗算法的基本原理如下:

1.1包围机制

斑点鬣狗具有熟悉并判断猎物的位置,从而包围它们的能力。该行为的数学模型由具体描述为:
D h = ∣ B . P t − P ( t ) ∣ B = 2 r 1 D_{h}=|B.P_{t}-P(t)|\\ B=2r_{1} Dh=B.PtP(t)B=2r1
式中: D h D_{h} Dh为猎物与斑点鬣狗个体之间的距离; t t t
迭代次数; P p P_{p} Pp为猎物位置; P ( t ) P(t) P(t) 是斑点鬣狗个体位
置; B B B为摇摆因子。

斑点鬣狗的个体位置更新为:
P ( t + 1 ) = P t − E . D h E = 2 h . r 2 − h h = 5 − 5 I t e r a t i o n N I P(t+1)=P_{t}-E.D_{h}\\ E=2h.r_{2}-h\\ h=5-5\frac {Iteration}{NI} P(t+1)=PtE.DhE=2h.r2hh=55NIIteration

式中:E为收敛因子; r1,r2 表示[0,1] 间的随机数;h表示控制因子,随迭代次数的增加而线性减小,取值范围为[0,5] ; NI为最大迭代次数。

斑点鬣狗通过可以通过猎物的位置, 来调整自己的位置。设斑点鬣狗位置为( A A A B B B),猎物位置为( A ∗ A^{*} A B ∗ B^{*} B)。斑点鬣狗通过调整B和E来遍布猎物周围不同的位置。如下图所示:

在这里插入图片描述

图1斑点鬣狗的二维位置矢量

1.2 狩猎机制

斑点鬣狗通常依靠可信赖的种群网络及识别猎物位置的能力来生活和分组捕杀。该机制的具体描述为:
D h = ∣ B . P t ( t ) − P k ∣ P k = P h − E . D h C h = P k + P k + 1 + . . . P k + N D_{h}=|B.P_{t}(t)-P_{k}|\\ P_{k}=P_{h}-E.D_{h}\\ C_{h}=P_{k}+P_{k+1}+...P_{k+N} Dh=B.Pt(t)PkPk=PhE.DhCh=Pk+Pk+1+...Pk+N
式中: P h P_{h} Ph定义了第一个最佳斑点鬣狗的位置; P k P_{k} Pk
示其他斑点鬣狗的位置; N N N表示斑点鬣狗的数量; C h C_{h} Ch N N N个最优解的集群。其中 N N N计算如下:
N = C o u n t n o s ( P h , P h + 1 , . . . , ( P h + M ) N=Count_{nos}(P_{h},P_{h+1},...,(P_{h}+M) N=Countnos(Ph,Ph+1,...,(Ph+M)
式子中: M M M是[0.5,1]中的随机向量,在添加 M M M之后, n o s nos nos定义可行解的数量并计算所有候选解,其与给定搜索空间中的最优解相似。

1.3 攻击猎物(局部搜索)

斑点鬣狗在猎食的最后阶段开始攻击猎物,当收敛因子 ∣ E ∣ < 1 |E|<1 E<1 时,斑点鬣狗个体便会向猎物发动攻击。全局最优解通过求取当前最优解集的平均值来确定斑点鬣狗搜
索个体的更新趋势。攻击猎物的数学公式具体描述如下:
P h ( t + 1 ) = C h N P_{h}(t+1)=\frac {C_{h}}{N} Ph(t+1)=NCh
式子中: P h ( t + 1 ) P_{h}(t+1) Ph(t+1)保持最优解; C h C_{h} Ch表示最优解群集。
4) 搜索机制(全局探索):斑点鬣狗大多根据位于最优解群集 C h C_{h} Ch 中的斑点鬣狗群或群集的位置来搜寻猎物,当收敛因子 ∣ E ∣ > 1 |E|>1 E>1时,斑点鬣狗将分散 , 远 离 当 前 的 猎 物 , 并 寻 找 更 合 适 的 猎 物 位置。这种机制使得算法可在全局搜索。

用SHO 算法解决优化问题时需要注意以下几点:
(1)该算法保留了迭代过程中获得的所有最佳解。
(2)所提出的斑点鬣狗搜寻机制定义了一个圆形的邻域周围的解决方案,可以扩展到更高的维度作为一个超球体。
(3)随机向量B和E协助候选解具有不同随机位置的超
球体。
(4)建议的狩猎方法允许候选解确定猎物的可能位置。
(5)利用向量E和h的调整值可表示探险和开发的 可能性这一特点,使该算法可以 轻松地在探险和开发之间 进行转换。
(6)使用向量E,一半迭代用于搜索(探险)( ∣ E ∣ > 1 |E|>1 E>1),
另一半迭代用于打猎(开发)( ∣ E ∣ < 1 |E|<1 E<1)。

1.4 算法流程图

在这里插入图片描述

图2.流程图

2. 算法结果:

在这里插入图片描述

3.参考文献:

[1]DHIMAN G, KAUR A. Spotted hyena optimizer for solving engineering design problems[C]//2017 International.Conference on Machine learning and Data Science(MLDS). Greater Noida, India, IEEE, 2017.

[2]贾鹤鸣,姜子超,李瑶,孙康健,李金夺,彭晓旭.基于模拟退火斑点鬣狗优化算法的特征选择[J].应用科技,2020,47(01):74-79.

[3]钟文,张志浩,管鑫,陈波,黄泰相,付翊航.基于斑点鬣狗算法的风/光/抽水蓄能联合运行系统优化调度研究[J].电力学报,2020,35(02):113-122.

4.Matlab代码地址:

斑点鬣狗优化算法
算法相关应用matlab代码

名称说明或者参考文献
斑点鬣狗优化的BP神经网络(预测)https://blog.csdn.net/u011835903/article/details/112149776 (原理一样,只是优化算法用斑点鬣狗算法)

5.Python代码地址:

个人资料介绍

这篇关于智能优化算法:斑点鬣狗优化算法-附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071701

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.