智能优化算法:冠状病毒群体免疫优化算法 -附代码

2024-06-18 07:19

本文主要是介绍智能优化算法:冠状病毒群体免疫优化算法 -附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

智能优化算法:冠状病毒群体免疫优化算法

文章目录

  • 智能优化算法:冠状病毒群体免疫优化算法
    • 1.算法原理
    • 2.算法结果
    • 3.参考文献
    • 4.Matlab

摘要:冠状病毒群体免疫优化算法是于2020年提出的一种新型智能优化算法。

1.算法原理

冠状病毒群免疫优化算法(CHIO)灵感来源于应对冠状病毒大流行(2019冠状病毒疾病)的群体免疫概念。传播冠状病毒的速度取决于感染者如何与其他社会成员直接接触。为了保护社会其他成员免受这种疾病的侵害,健康专家建议社会疏远。群体免疫是当大多数群体具有免疫力时,群体达到的一种状态,这种状态可以防止疾病的传播。这些概念是根据优化概念建模的。既模仿群体免疫策略,又模仿社会距离概念。利用三种类型的个体病例进行群体免疫: 易感者、感染者和免疫者。

提出的优化算法对群体免疫策略进行了建模。

第一步初始化 CHIO和最佳化问题的参数在这一步中,最佳化问题是在目标函数的背景下建立的:
m i n f ( x ) , x ∈ [ l b , u b ] (1) minf(x),x\in[lb,ub]\tag{1} minf(x),x[lb,ub](1)
其中: l b lb lb u b ub ub​分别为搜索的上下限。

第二步:首先产生群体免疫群体 H I P HIP HIP,然后随机(或启发式)产生一组病例(个体) H I S HIS HIS。生成的病例以二维矩阵 n × H I S n×HIS n×HIS​形式存储,如下所示:
H I P = [ x 1 1 , x 2 1 , . . . , x n 1 x 1 2 , x 2 2 , . . . , x n 2 . . . , . . . , . . . , . . . x 1 H I S , x 2 H I S , . . . , x n H I S ] (2) HIP=\left[\begin{matrix}x_1^1,x_2^1,...,x_n^1\\ x_1^2,x_2^2,...,x_n^2\\ ...,...,...,...\\ x_1^{HIS},x_2^{HIS},...,x_n^{HIS} \end{matrix}\right]\tag{2} HIP=x11,x21,...,xn1x12,x22,...,xn2...,...,...,...x1HIS,x2HIS,...,xnHIS(2)
其中: x i j = l b i + ( u b i − l b i ) ∗ r a n d , i = 1 , 2 , . . , n x_i^j=lb_i+(ub_i-lb_i)*rand,i=1,2,..,n xij=lbi+(ubilbi)rand,i=1,2,..,n, H I S HIS HIS为人口数量, n n n为问题的维数。利用方程(1)计算每种情况的目标函数(或免疫率)。

第三步:冠状病毒群体免疫进化这是主要的改进循环。 x i j x_i^j xij病例的基因 x j x^j xj​​要么保持不变,要么受到社会距离的影响,其影响根据基本繁殖率 B R r BRr BRr
x i j ( t + 1 ) = { x i j ( t ) , r ≥ B R r C ( x i j ( t ) ) , r < 1 / 3 B R r N ( x i j ( t ) ) , r < 2 / 3 B R r R ( x i j ( t ) ) , r < B R r (3) x_i^j(t+1)=\begin{cases} x_i^j(t),r\geq BRr\\ C(x_i^j(t)),r<1/3BRr\\ N(x_i^j(t)),r<2/3BRr\\ R(x_i^j(t)),r<BRr \end{cases}\tag{3} xij(t+1)=xij(t),rBRrC(xij(t)),r<1/3BRrN(xij(t)),r<2/3BRrR(xij(t)),r<BRr(3)
其中: r r r为在0和1之间的随机数。 x i j ( t + 1 ) x_i^j(t+1) xij(t+1)为新基因值, x i j ( t ) x_i^j(t) xij(t)为更新前的基因值。
C ( x i j ( t ) ) = x i j ( t ) + r ∗ ( x I j ( t ) − x i c ( t ) ) (4) C(x_i^j(t))=x_i^j(t)+r*(x_I^j(t)-x_i^c(t))\tag{4} C(xij(t))=xij(t)+r(xIj(t)xic(t))(4)
其中: x i c ( t ) x_i^c(t) xic(t)为根据从感染病例随机选择的状态向量 c = { i ∣ S i = 1 } c=\{i|S_i=1\} c={iSi=1}
N ( x i j ( t ) ) = x i j ( t ) + r ( x i j ( t ) − x i m ( t ) ) (5) N(x_i^j(t))=x_i^j(t)+r(x_i^j(t)-x_i^m(t))\tag{5} N(xij(t))=xij(t)+r(xij(t)xim(t))(5)
其中: x i m ( t ) x_i^m(t) xim(t)为根据从感染病例随机选择的状态向量 m = { i ∣ S i = 0 } m=\{i|S_i=0\} m={iSi=0}
R ( x i j ( t ) ) = x i j ( t ) + r ( x i j ( t ) − x i V ( t ) ) (6) R(x_i^j(t))=x_i^j(t)+r(x_i^j(t)-x_i^V(t))\tag{6} R(xij(t))=xij(t)+r(xij(t)xiV(t))(6)
其中: x i V x_i^V xiV​​为最好的免疫病例。

第四步:更新群体免疫群体,由 x j ( t + 1 ) x^j(t+1) xj(t+1)生成的每个免疫率生成的 f ( x j ( t + 1 ) ) f(x^j(t+1)) f(xj(t+1)),若 f ( x j ( t + 1 ) ) < f ( x j ( t ) ) f(x^j(t+1))<f(x^j(t)) f(xj(t+1))<f(xj(t)),当前的 x j ( t ) x^j(t) xj(t) x j ( t + 1 ) x^j(t+1) xj(t+1)代替。年龄矢量 A j A_j Aj随着状态向量 S j = 1 S_j=1 Sj=1增加。状态向量 S j = 1 S_j=1 Sj=1可见式(7)
S j = { 1 , f ( x j ( t + 1 ) ) < f ( x ) j ( t + 1 ) Δ f ( x ) ∧ S j = 0 ∧ i s _ C o r o n a ( x j ( t + 1 ) ) 2 , f ( x j ( t + 1 ) ) > f ( x ) j ( t + 1 ) Δ f ( x ) ∧ S j = 1 (7) S_j=\begin{cases} 1,f(x^j(t+1))<\frac{f(x)^j(t+1)}{\Delta f(x)}\wedge S_j=0\wedge is\_Corona(x^j(t+1))\\ 2,f(x^j(t+1))>\frac{f(x)^j(t+1)}{\Delta f(x)}\wedge S_j=1 \end{cases}\tag{7} Sj={1,f(xj(t+1))<Δf(x)f(x)j(t+1)Sj=0is_Corona(xj(t+1))2,f(xj(t+1))>Δf(x)f(x)j(t+1)Sj=1(7)
其中: i s _ C o r o n a ( x j ( t + 1 ) ) is\_Corona(x^j(t+1)) is_Corona(xj(t+1))是当新的 x j ( t + 1 ) x^j(t+1) xj(t+1)继承了任何感染病例的值时,它是二进制值1, Δ f ( x ) \Delta f(x) Δf(x)​​为种群免疫率的平均值。注意,如果新产生的个人免疫率高于人口的平均免疫率,则人口中的个人免疫率将根据以前计算的社会距离改变。这意味着我们的人口免疫力开始提高。如果新产生的种群足够强壮,可以对流行病免疫,那么我们就达到了群体免疫阈值。

第五步:死亡病例

若免疫率 f ( x j ( t + 1 ) ) f(x^j(t+1)) f(xj(t+1)),在当前 S j = 1 S_j=1 Sj=1的迭代次数 M a x a g e Max_{age} Maxage被感染的情况不能改善下,那么这个病例就会死亡。在那之后,它被重新生成由式 x i j = l b i + ( u b i − l b i ) ∗ r a n d x_i^j=lb_i+(ub_i-lb_i)*rand xij=lbi+(ubilbi)rand​。进一步设置 S j = A j = 0 S_j=A_j=0 Sj=Aj=0​.这可能有助于使目前的人口多样化,从而避免局部最优。

第六步:停止准则 CHIO重复步骤3到步骤6直到终止准则,这通常取决于是否达到最大迭代次数。在这种情况下,易感和免疫的病例总数占主导地位。感染的病例也消失了。

算法流程:

具体可见算法原理步骤1至6。伪代码见下图:

请添加图片描述

2.算法结果

请添加图片描述

3.参考文献

[1] Al Betar Mohammed Azmi,Alyasseri Zaid Abdi Alkareem,Awadallah Mohammed A,Abu Doush Iyad. Coronavirus herd immunity optimizer (CHIO).[J]. Neural computing & applications,2020,33(prepublish):

4.Matlab

这篇关于智能优化算法:冠状病毒群体免疫优化算法 -附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071641

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来