基于麻雀算法改进的DELM预测-附代码

2024-06-18 07:08

本文主要是介绍基于麻雀算法改进的DELM预测-附代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

麻雀算法改进的深度极限学习机DELM的回归预测

文章目录

  • 麻雀算法改进的深度极限学习机DELM的回归预测
    • 1.ELM原理
    • 2.深度极限学习机(DELM)原理
    • 3.麻雀算法
    • 4.麻雀算法改进DELM
    • 5.实验结果
    • 6.参考文献
    • 7.Matlab代码

1.ELM原理

ELM基础原理请参考:https://blog.csdn.net/u011835903/article/details/111073635。

自动编码器 AE(Auto Encoder)经过训练可以将输入复制到输出。因为不需要标记数据,训练自动编码器是不受监督的。因此,将AE的思想应用到ELM中,使ELM的输入数据同样被用于输出,即输出Y=X。作为自编码器的极限学习机ELM-AE网络结构如图1所示。

请添加图片描述

图1.ELM-AE网络结构图

若图1中m>L ,ELM-AE实现维度压缩,将高维度数据映射成低维度特征表达;若 m=L,ELM-AE实现等维度的特征表达;若 m<L ,ELM-AE实现稀疏表达,即原始数据的高维特征表达。

综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数 ( a i , b i ) (a_i,b_i) (ai,bi)​​随机生成后正交。正交化后的优点有:

(1)根 据 J-L(Johnson-Lindensrauss) 定理,权重和偏置正交化可以将输入数据映射到不同或等维度的空间,从而实现不同功能的特征表达。

(2)权重和偏置的正交化设计可以去除特征以外的噪声,使特征之间均匀,且更加线性独立进而增强系统的泛化能力。

ELM-AE的输出可以用如下表达式表示:
x j = ∑ i = 1 L β i G ( a i , b i , x j ) , a i ∈ R m , β i ∈ R m , j = 1 , 2 , . . . , N , a T a = I , b T b = 1 (1) x_j=\sum_{i=1}^L \beta_iG(a_i,b_i,x_j),a_i\in R^m,\beta_i\in R^m,j=1,2,...,N,a^Ta=I,b^Tb=1 \tag{1} xj=i=1LβiG(ai,bi,xj),aiRm,βiRm,j=1,2,...,N,aTa=I,bTb=1(1)
其中 a a a a i a_i ai组成的矩阵, b b b b i b_i bi​组成的向量。隐藏层的输出权重为:
β = ( I C + H T H ) − 1 H T X (2) \beta = (\frac{I}{C}+H^TH)^{-1}HTX \tag{2} β=(CI+HTH)1HTX(2)
其中, X = [ x 1 , . . . , x N ] X=[x_1,...,x_N] X=[x1,...,xN]是输入数据。

2.深度极限学习机(DELM)原理

根据ELM-AE的特征表示能力,将它作为深度极限学习机 DELM的基本单元。与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。

请添加图片描述

图2.DELM模型训练过程

DELM的思想是通过最大限度地降低重构误差使输出可以无限接近原始输入,经过每一层的训练,可以学习到原始数据的高级特征。图2描述了DELM模型的训练过程,将输入数据样本X作为第1个ELM-AE的目标输出( X 1 = X X_1 =X X1=X​​),进而求取输出权值 β 1 β_1 β1​​ ;然后将DELM第1个隐藏层的输出矩阵 H 1 H_1 H1​​当作下1个 E L M − A E ELM-AE ELMAE​的输入与目标输出( X 2 = X X_2=X X2=X​),依次类推逐层训练,最后1层用 E L M ELM ELM​​​来训练,使用式(2)来求解DELM的最后1个隐藏层的输出权重 β i + 1 \beta_{i+1} βi+1​​ 。图2中 H i + 1 H_{i+1} Hi+1​​ 是最后1个隐藏层的输出矩阵,T是样本标签。 H i + 1 H_{i+1} Hi+1​每1层隐藏层的输入权重矩阵为 W i + 1 = β i + 1 T W_{i+1}=\beta_{i+1}^T Wi+1=βi+1T​。

3.麻雀算法

麻雀搜索算法的具体原理参考博客:https://blog.csdn.net/u011835903/article/details/108830958。

4.麻雀算法改进DELM

由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用麻雀算法对DELM的初始权重进行优化。适应度函数设计如下:
f i t n e s s = M S E ( t r a i n ) + M S E ( t e s t ) fitness=MSE(train)+MSE(test) fitness=MSE(train)+MSE(test)
适应度函数为,训练集和测试集(验证集)的均方误差之和,误差越小,预测越准确。

5.实验结果

本案例中数据总量为600组,其中训练集和测试集分别划分为400组和200组。输入数据维度为3维,标签数据为1维。数据划分结果如下:

%% 导入数据
load data
%训练集——400个样本
P_train=input(:,(1:400));
T_train=output((1:400));
% 测试集——200个样本
P_test=input(:,(400:600));
T_test=output((400:600));

DELM的参数设置如下:

这里DELM采用2层结构,每层的节点数分别为2,3。采用sigmoid激活函数。

%% DELM参数设置
ELMAEhiddenLayer = [2,3];%ELM—AE的隐藏层数,[n1,n2,...,n],n1代表第1个隐藏层的节点数。
ActivF = 'sig';%ELM-AE的激活函数设置
C = 5; %正则化系数

麻雀算法相关参数设置:

%% 优化算法参数设置:
%计算权值的维度
dim=0;
for i = 1:length(ELMAEhiddenLayer)dim = dim+ ELMAEhiddenLayer(i)*size(Pn_train,2);
end
popsize = 20;%种群数量
Max_iteration = 50;%最大迭代次数
lb = -1;%权值下边界
ub = 1;%权值上边界
fobj = @(X)fun(X,Pn_train,Tn_train,Pn_test,Tn_test,ELMAEhiddenLayer,ActivF,C);
[Best_pos,Best_score,SSA_cg_curve]=SSA(popsize,Max_iteration,lb,ub,dim,fobj);

最终预测结果如下:

训练集预测结果:

请添加图片描述

测试集预测结果:

请添加图片描述

请添加图片描述

DELM训练集MSE:0.04528
DELM测试集MSE:0.04953
SSA_DELM训练集MSE:0.044438
SSA_DELM测试集MSE:0.048698

从结果上来看SSA-DELM的MSE明显好于原始DELM的结果。

6.参考文献

[1]颜学龙,马润平.基于深度极限学习机的模拟电路故障诊断[J].计算机工程与科学,2019,41(11):1911-1918.

7.Matlab代码

在这里插入图片描述

这篇关于基于麻雀算法改进的DELM预测-附代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071617

相关文章

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤