什么是隐马尔可夫模型?

2024-06-17 23:44
文章标签 模型 马尔可夫

本文主要是介绍什么是隐马尔可夫模型?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、说明
  • 二、玩具HMM:5′拼接位点识别
  • 三、那么,隐藏了什么?
  • 四、查找最佳状态路径
  • 五、超越最佳得分对齐
  • 六、制作更逼真的模型
  • 七、收获

关键词:hidden markov model

一、说明

被称为隐马尔可夫模型的统计模型是计算生物学中反复出现的主题。什么是隐马尔可夫模型,为什么它们对这么多不同的问题如此有用?

通常,生物序列分析只是在每个残留物上贴上正确的标签。在基因鉴定中,我们希望将核苷酸标记为外显子、内含子或基因间序列。在序列比对中,我们希望将查询序列中的残基与目标数据库序列中的同源残基相关联。我们总是可以为任何给定的问题编写一个临时程序,但同样令人沮丧的问题总是会反复出现。一是我们希望整合异构的信息来源。例如,基因发现者应该将剪接位点共识、密码子偏差、外显子/内含子长度偏好和开放阅读框分析结合到一个评分系统中。这些参数应该如何设置?应该如何对不同类型的信息进行加权?第二个问题是从概率上解释结果。找到最佳得分答案是一回事,但分数意味着什么,我们对最佳得分答案是否正确的信心有多大?第三个问题是可扩展性。当我们完善我们的临时基因发现器时,我们希望我们也模拟了翻译起始共识、选择性剪接和多聚腺苷酸化信号。很多时候,将更多的现实堆积在一个脆弱的临时程序上,会使它在自身的重量下崩溃。

隐马尔可夫模型 (HMM) 是建立线性序列“标记”问题的概率模型的形式基础1,2.它们提供了一个概念工具包,只需绘制直观的图片即可构建复杂的模型。它们是各种项目的核心,包括基因查找、图谱搜索、多序列比对和调控位点鉴定。HMM 是计算序列分析的乐高积木。

二、玩具HMM:5′拼接位点识别

举个简单的例子,想象一下下面一个 5’ 剪接位点识别问题的漫画。假设我们得到一个 DNA 序列,该序列从外显子exon开始,包含一个 5’ 剪接位点,以内含子intron结束。问题在于确定从外显子到内含子的转换发生在哪里——5′剪接位点(5′SS)在哪里。

为了让我们智能地猜测,外显子、剪接位点和内含子的序列必须具有不同的统计特性。让我们想象一些简单的差异:假设外显子平均具有均匀的碱基组成(每个碱基 25%),内含子富含 A/T(例如,A/T 各 40%,C/G 各 10%),5′SS 共有核苷酸几乎总是 G(例如,95% G 和 5% A)。

从这些信息开始,我们可以绘制一个 HMM(图 1)。HMM 调用三种状态,一种状态对应我们可能分配给核苷酸的三个标签:E(exon)、5(5′SS)和 I(intron)。每个状态都有自己的发射概率(如上所示),它模拟了 5′SS 处外显子、内含子和共识 G 的基本组成。每个状态也有转换概率(箭头),即从这个状态移动到新状态的概率。转移概率描述了我们期望状态发生的线性顺序:一个或多个 E、一个 5、一个或多个 I。

在这里插入图片描述

图 1:用于 5’ 剪接位点识别的玩具 HMM。

三、那么,隐藏了什么?

想象一个 HMM 生成一个序列是很有用的。当我们访问一个州时,我们会从该州的排放概率分布中排放出残留物。然后,我们根据该州的转移概率分布选择接下来要访问的州。因此,该模型生成了两串信息。一个是基础状态路径(标签),当我们从一个状态转换到另一个状态时。另一个是观察到的序列(DNA),每个残基都从状态路径中的一个状态发射出来。

状态路径是马尔可夫链,这意味着我们接下来要进入的状态仅取决于我们所处的状态。由于我们只得到了观察到的序列,所以这个底层状态路径是隐藏的——这些是我们想要推断的残基标签。状态路径是一条隐藏的马尔可夫链。

概率 P(S,π|HMM,θ),具有参数 θ 的 HMM 生成状态路径 π,观测到的序列 S 是所使用的所有发射概率和跃迁概率的乘积。例如,考虑图 1 中间的 26 个核苷酸序列和状态路径,其中有 27 个跃迁和 26 个发射需要处理。将所有 53 个概率相乘(并取对数,因为这些数字很小),您将计算对数 P(S,π|HMM,θ) = −41.22。

HMM 是一个完全概率模型——模型参数和整体序列“分数”都是概率。因此,我们可以使用贝叶斯概率论以标准、强大的方式操纵这些数字,包括优化参数和解释分数的重要性。

四、查找最佳状态路径

在分析问题中,我们得到了一个序列,我们想要推断隐藏的状态路径。可能有许多状态路径可以生成相同的序列。我们想找到概率最高的那个。

例如,如果我们在图 1 中给定 HMM 和 26 个核苷酸序列,则有 14 条可能的路径具有非零概率,因为 5′SS 必须落在 14 个内部 As 或 G 之一上。最好的一个的对数概率为 −41.22,这推断出最有可能的 5′SS 位置位于第五个 G。

对于大多数问题,有太多可能的状态序列,我们无法枚举它们。高效的 Viterbi 算法保证在给定序列和 HMM 的情况下找到最可能的状态路径。维特比算法是一种动态规划算法,与用于标准序列比对的算法非常相似。

五、超越最佳得分对齐

图 1 显示,一个替代状态路径与将 5′SS 置于第五个 G 的分数略有不同(对数概率为 -41.71 对 -41.22)。我们对第五个G是正确的选择有多大信心?

这是概率建模优势的一个例子:我们可以直接计算我们的置信度。状态 k 发出残基 i 的概率是使用状态 k 生成残基 i(即 π我 = k 在状态路径 π) 中,由所有可能的状态路径的总和归一化。在我们的玩具模型中,这只是分子中的一条状态路径和分母中 14 条状态路径的总和。我们得到得分最高的第五个 G 正确率为 46%,第六个 G 位置正确率为 28%(图 1,底部)。这称为后验解码。对于较大的问题,后验解码使用两种称为“前向”和“后向”的动态规划算法,它们本质上类似于 Viterbi,但它们对可能的路径求和,而不是选择最佳路径。

六、制作更逼真的模型

制作 HMM 意味着指定四件事:(i) 符号字母表,K 个不同的符号(例如,ACGT,K = 4); (ii)模型中的状态数,M;(iii) 排放概率 e我(x) 对于每个状态 i,该总和 1 超过 K 符号 x, Σxe我(x) = 1;(iv)转移概率t我(j) 对于每个状态 i 到任何其他状态 j(包括它自己),其总和为 1 超过 M 状态 j, Σjt我(j) = 1。任何具有这些属性的模型都是 HMM。

这意味着只需绘制与手头问题相对应的图片即可制作新的 HMM,如图 1 所示。这种图形的简单性使人们可以清楚地关注问题的生物学定义。

例如,在我们的玩具拼接站点模型中,也许我们对自己的辨别能力不满意;也许我们想在 5’ 剪接位点添加一个更现实的六核苷酸共识 GTRAGT。我们可以用一行六个 HMM 状态代替“5”状态,以模拟一个六碱基无固定的共识基序,参数化已知 5’ 剪接位点的发射概率。也许我们想模拟一个完整的内含子,包括一个 3’ 剪接位点;我们只需为 3′SS 共识添加一行状态,并添加一个 3′ 外显子状态,让观察到的序列以外显子而不是内含子结束。那么也许我们想建立一个完整的基因模型…无论我们添加什么,都只是画出我们想要的东西。

七、收获

HMM 不能很好地处理残基之间的相关性,因为它们假设每个残基仅取决于一种基础状态。HMM 通常不合适的一个例子是 RNA 二级结构分析。保守的RNA碱基对诱导长程成对相关性;一个位置可能是任何残基,但碱基配对的伴侣必须是互补的。HMM 状态路径无法“记住”遥远状态生成的内容。

有时,人们可以在不破坏算法的情况下弯曲 HMM 的规则。例如,在基因发现中,人们想要发射一个相关的三重密码子,而不是三个独立的残基;HMM 算法可以很容易地扩展到三重态发射态。但是,基本的 HMM 工具包只能延伸到此为止。除了HMM之外,还有更强大(尽管效率较低)的概率模型用于序列分析。

这篇关于什么是隐马尔可夫模型?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1070726

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU