语音质量评价方法之MOS

2024-06-17 19:44
文章标签 质量 评价 方法 语音 mos

本文主要是介绍语音质量评价方法之MOS,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

在语音增强、语音合成、语音转换、声音转换、语音克隆、语音修复等等领域,常常要对输出的语音进行评价。对语音的质量评价一般关注两个方面,即主观评价和客观评价。主观评价就是人凭借听觉感受对语音进行打分,客观评价比较广泛,有的是通过计算输出语音与目标语音之间的声学参数之间的差异来衡量输出语音的质量;有的是依靠仪器测试响度、频率响应、灵敏度等指标;有的依靠模型和算法,模拟人工打分。

  • 主观评价方法:MOS、CMOS、ABX(XAB)、Mushar、PESQ…
  • 客观评价方法:MCD、MSD 、MEL loss、F0 MSE、F0RMSE、F0 CC、E MSE、 DurMSE…

注:
这些评价方法并不都是相互独立的,如:F0 MSE、F0RMSE是计算最小均方误差和最小均方根误差。有一定的相似性。
这些评价方法在不同的领域评价又有一定的区别。评估的目的不同,所用的评估方法也不同。

平均意见得分MOS

早期语音质量的评价方式是凭主观的,人们在打通电话之后通过人耳来感知语音质量的好坏。1996年国际ITU组织在ITU-T P.800(电话传输系统语音质量主观评价)和P.830(电话宽带和宽带数字语音编解码器主观评价方法)建议书开始制订相关的评测标准,即MOS(Mean Opinion Score)测试。

平均主观值MOS是广泛认同的语音质量标准。因此,无论采用何种方法,所有测量方法所得到的结果都必须对应到最终的平均主观值MOS。

官网:MOS terminology

评价标准

它是一种主观测试方法,将用户接听和感知语音质量的行为进行调研和量化,由不同的调查用户分别对原始标准语音和经过无线网传播后的衰退声音进行主观感受对比,评出MOS分值。评价为5分制,标准如下:
在这里插入图片描述

与评测的人员对语音整体质量进行打分,分值范围为1-5分,分数越大表示语音质量最好。

一般MOS应为4或者更高,这可以被认为是比较好的语音质量,若MOS低于3.6,则表示大部分被测不太满意这个语音质量。

MOS测试一般要求:

  • 足够多样化的样本(即试听者和句子数量)以确保结果在统计上的显著;
  • 控制每个试听者的实验环境和设备保持一致;
  • 每个试听者遵循同样的评估标准。

评价规则

标准中的测试规则主要定义几点:

  1. 参考的标准音频和被测试音频间隔测试,连续重复4次;

  2. 音频源采用15~20s;

  3. 一次完整的测试时间不应超过15~20min;

  4. 测试成员:专家成员最少10人,非专家20人。(语音合成需至少40人)

  5. 如果预先定义评分值,则不需要对单个评分值做归一化,否则需要归一化处理。

  6. 评分可以采用5分或者7分制,也有嫌它不够精细的,用10分20分的。

  7. 所测语音材料要足够丰富,测试环境要尽量保持相同。

评价内容

对于语音合成系统,评估的内容也包含三个方面,即合成语音的清晰度,可懂度,自然度。

对于语音转换系统,一般评估

语音合成中的MOS

对于语音合成(文语转换TTS)系统,评估的工作有三个方面的任务和目的:

  • 对比不同的合成系统或算法,排出位次;
  • 对某个系统或算法进行诊断,指出其不足之处和问题所在;
  • 应用评价,确定某系统是否适应某种应用。

对于语音合成系统,评估的内容也包含三个方面,即合成语音的清晰度,可懂度,自然度:

  • 清晰度:针对语音中词以下的语音单元(音素、声母、韵母等)的清晰度;
  • 可懂度:针对语音中词以上的语言单元(如字、单词和句子等)的可懂程度;
  • 自然度:指的是更高一层的内容,如短语、句子、篇章等方面的整体自然水平。

合成语音质量的评估,不但与语音学、语言学相关、而且与心理学也有着密切的联系。

MOS不仅用于语音编码、通信设备的性能测试上,也可用于语音合成系统的整体评估,1994年国际ITU组织在ITU-T P.85(语音输出设备质量的主观性能评测方法),根据该建议草案,选择10-30句语音测试材料,从8个方面用5分制MOS进行打分。

  • 整体印象:整体感觉如何
  • 可接受度:你认为这种声音是否可以在某个应用领域上做信息服务?
  • 收听效果、注意力:需要多大的专心或注意力程度才能听懂语音
  • 理解难度:句子的意思是不是说清楚了?是否有些词不好理解
  • 清晰度:声音是不是清晰可辨?
  • 发音:发音中的规则让人不舒服的程度
  • 声音的悦耳程度:声音好听吗?
  • 讲话速度:速度快,慢,还是正常?

在P.85中虽然没有给出整体印象的5个等级的具体定义,但其他7个方面都给出了5个等级的具体说明。可以用计权平均的方法得到总体的满意度评价,也可以综合这几个方面给出一个主观的评价得分。

附语音合成论文中计算MOS的脚本,其不仅强调MOS值,并且要求95%的置信区间内的分数:

# -*- coding: utf-8 -*-
# @FileName: caculate_MOS.pyimport math
import numpy as np
import pandas as pd
from scipy.linalg import solve
from scipy.stats import tdef calc_mos(data_path: str):'''计算MOS,数据格式:MxN,M个句子,N个试听人,data_path为MOS得分文件,内容都是数字,为每个试听的得分:param data_path::return:'''data = pd.read_csv(data_path)mu = np.mean(data.values)var_uw = (data.std(axis=1) ** 2).mean()var_su = (data.std(axis=0) ** 2).mean()mos_data = np.asarray([x for x in data.values.flatten() if not math.isnan(x)])var_swu = mos_data.std() ** 2x = np.asarray([[0, 1, 1], [1, 0, 1], [1, 1, 1]])y = np.asarray([var_uw, var_su, var_swu])[var_s, var_w, var_u] = solve(x, y)M = min(data.count(axis=0))N = min(data.count(axis=1))var_mu = var_s / M + var_w / N + var_u / (M * N)df = min(M, N) - 1  # 可以不减1t_interval = t.ppf(0.975, df, loc=0, scale=1)  # t分布的97.5%置信区间临界值interval = t_interval * np.sqrt(var_mu)print('{} 的MOS95%的置信区间为:{} +—{} '.format(data_path, round(float(mu), 3), round(interval, 3)))if __name__ == '__main__':data_path = ''calc_mos(data_path)

这篇关于语音质量评价方法之MOS的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1070366

相关文章

MyBatis与其使用方法示例详解

《MyBatis与其使用方法示例详解》MyBatis是一个支持自定义SQL的持久层框架,通过XML文件实现SQL配置和数据映射,简化了JDBC代码的编写,本文给大家介绍MyBatis与其使用方法讲解,... 目录ORM缺优分析MyBATisMyBatis的工作流程MyBatis的基本使用环境准备MyBati

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

前端bug调试的方法技巧及常见错误

《前端bug调试的方法技巧及常见错误》:本文主要介绍编程中常见的报错和Bug,以及调试的重要性,调试的基本流程是通过缩小范围来定位问题,并给出了推测法、删除代码法、console调试和debugg... 目录调试基本流程调试方法排查bug的两大技巧如何看控制台报错前端常见错误取值调用报错资源引入错误解析错误

Springboot控制反转与Bean对象的方法

《Springboot控制反转与Bean对象的方法》文章介绍了SpringBoot中的控制反转(IoC)概念,描述了IoC容器如何管理Bean的生命周期和依赖关系,它详细讲解了Bean的注册过程,包括... 目录1 控制反转1.1 什么是控制反转1.2 SpringBoot中的控制反转2 Ioc容器对Bea

C++实现回文串判断的两种高效方法

《C++实现回文串判断的两种高效方法》文章介绍了两种判断回文串的方法:解法一通过创建新字符串来处理,解法二在原字符串上直接筛选判断,两种方法都使用了双指针法,文中通过代码示例讲解的非常详细,需要的朋友... 目录一、问题描述示例二、解法一:将字母数字连接到新的 string思路代码实现代码解释复杂度分析三、

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)

《SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)》本文介绍了如何在SpringBoot项目中使用Jasypt对application.yml文件中的敏感信息(如数... 目录SpringBoot使用Jasypt对YML文件配置内容进行加密(例:数据库密码加密)前言一、J

Spring Boot 中正确地在异步线程中使用 HttpServletRequest的方法

《SpringBoot中正确地在异步线程中使用HttpServletRequest的方法》文章讨论了在SpringBoot中如何在异步线程中正确使用HttpServletRequest的问题,... 目录前言一、问题的来源:为什么异步线程中无法访问 HttpServletRequest?1. 请求上下文与线

解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题

《解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题》在Spring开发中,@Autowired注解常用于实现依赖注入,它可以应用于类的属性、构造器或setter方法上,然... 目录1. 为什么 @Autowired 在属性上被警告?1.1 隐式依赖注入1.2 IDE 的警告:

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot