MixtralForCausalLM DeepSpeed Inference节约HOST内存【最新的方案】

本文主要是介绍MixtralForCausalLM DeepSpeed Inference节约HOST内存【最新的方案】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MixtralForCausalLM DeepSpeed Inference节约HOST内存【最新的方案】

  • 一.效果
  • 二.特别说明
  • 三.测试步骤
    • 1.创建Mixtral-8x7B配置文件(简化了)
    • 2.生成随机模型,运行cpu float32推理,输出结果
    • 3.加载模型,cuda 单卡推理
    • 4.DS 4 TP cuda 推理
    • 5.分别保存DS 4TP每个rank上engine.module的权值
    • 6.DS 4TP推理,init_empty_weights初始化模型,每个rank加载自己engine.module的权值

本文演示了MixtralForCausalLM DeepSpeed Inference如果节约HOST内存
方法:每个rank分别保存,并且使用accelerate的init_empty_weights
增加的功能:

  • safetensors分块的存储与加载
  • 解决register_buffer persistent=False,参数初始化的问题

一.效果

运行方式HOST内存占用备注
单卡推理13198 MB
DS 4TP13246 MB/GPU
DS 4TP 优化内存占用后369 MB/GPU直接加载到设备,更节约HOST内存

二.特别说明

  • 1.MixtralRotaryEmbedding中self.register_buffer(“sin_cached”, emb.sin().to(dtype), persistent=False)
    因为persistent为False。所以不会保存到state_dict中,module.to_empty(device)也不会保留它的值
    只能在模型初始化之后保存出来,之后engine.moudle加载完权值之后再把这个buffer替换进去

三.测试步骤

1.创建Mixtral-8x7B配置文件(简化了)

mkdir skip_init_demo
cd skip_init_demo
tee ./config.json <<-'EOF'
{"architectures": ["MixtralForCausalLM"],"attention_dropout": 0.0,"bos_token_id": 1,"eos_token_id": 2,"hidden_act": "silu","hidden_size": 1024,"initializer_range": 0.02,"intermediate_size": 4096,"max_position_embeddings": 1024,"model_type": "mixtral","num_attention_heads": 32,"num_experts_per_tok": 2,"num_hidden_layers": 32,"num_key_value_heads": 8,"num_local_experts": 8,"output_router_logits": false,"rms_norm_eps": 1e-05,"rope_theta": 1000000.0,"router_aux_loss_coef": 0.02,"sliding_window": 128,"tie_word_embeddings": false,"torch_dtype": "bfloat16","transformers_version": "4.36.0.dev0","use_cache": true,"vocab_size": 32000
}
EOF

2.生成随机模型,运行cpu float32推理,输出结果

rm -rf Mixtral-8x7B
tee gen_model.py <<-'EOF'
import torch
import os
import time
def main():torch.manual_seed(1)from transformers import MixtralForCausalLM, MixtralConfigconfig=MixtralConfig.from_pretrained("./config.json")model = MixtralForCausalLM(config).half()    model.eval()model.save_pretrained("./Mixtral-8x7B",safe_serialization=True)torch.manual_seed(2)input_tokens=torch.randint(0,32000,(1,128))model=model.float()output=model(input_tokens)output=output.logits.detach().reshape(-1).cpu().numpy()[:8]print(output)if __name__ == "__main__":main()
EOF
python gen_model.py
du Mixtral-8x7B -lh

输出

6.3G    Mixtral-8x7B[-0.9623295  -0.36580455  0.767425    1.7021806  -0.17950581  0.36059803-0.49157432 -0.58618194]

3.加载模型,cuda 单卡推理

tee open_model.py <<-'EOF'
import torch
import os
import psutil
import time
from transformers.modeling_utils import load_sharded_checkpoint,load_state_dict
import json
from safetensors import safe_opendef get_mem_info():pid = os.getpid()current_process = psutil.Process(pid)memory_info = current_process.memory_info()print(f"RSS: {memory_info.rss / (1024 * 1024):.2f}MB VMS:{memory_info.vms / (1024 * 1024):.2f}MB")def main():from transformers import MixtralForCausalLM, MixtralConfigget_mem_info()config=MixtralConfig.from_pretrained("./config.json")model = MixtralForCausalLM(config).half()get_mem_info()with open("Mixtral-8x7B/model.safetensors.index.json", "r") as file:index_data = json.load(file)weight_files = index_data.get('weight_map', [])state_dict = {}for k,v in weight_files.items():weights_path = os.path.join("Mixtral-8x7B", v)with safe_open(weights_path, framework="pt") as f:for k in f.keys():state_dict[k] = f.get_tensor(k)       model.load_state_dict(state_dict, strict=True)get_mem_info()model=model.to("cuda:0")torch.manual_seed(2)input_tokens=torch.randint(0,32000,(1,128)).to("cuda:0")output=model(input_tokens)output=output.logits.detach().reshape(-1).cpu().numpy()[:8]print(output)if __name__ == "__main__":main()
EOF
python open_model.py

输出:

RSS: 251.70MB VMS:3292.21MB
RSS: 6697.91MB VMS:13695.17MB
RSS: 13198.57MB VMS:26385.02MB[-0.9633789  -0.36450195  0.76708984  1.703125   -0.1772461   0.3581543-0.48901367 -0.5888672 ]

4.DS 4 TP cuda 推理

tee open_model.py <<-'EOF'
import torch
import os
import psutil
import time
from transformers.modeling_utils import load_sharded_checkpoint,load_state_dict
import deepspeed
from deepspeed.accelerator import get_accelerator
import json
from safetensors import safe_opendeepspeed.init_distributed(dist_backend='nccl')
world_size = torch.distributed.get_world_size()
local_rank=int(os.environ['LOCAL_RANK'])
rank=torch.distributed.get_rank()def get_mem_info(prefix):pid = os.getpid()current_process = psutil.Process(pid)memory_info = current_process.memory_info()print(f"{prefix} RANK:{os.environ['LOCAL_RANK']} RSS: {memory_info.rss / (1024 * 1024):.2f}MB VMS:{memory_info.vms / (1024 * 1024):.2f}MB")def main():torch.set_num_threads(1)from transformers import MixtralForCausalLM, MixtralConfigget_mem_info("Init")config=MixtralConfig.from_pretrained("./config.json")model = MixtralForCausalLM(config).half()get_mem_info("ModelCreate")print("-----------------------")with open("Mixtral-8x7B/model.safetensors.index.json", "r") as file:index_data = json.load(file)weight_files = index_data.get('weight_map', [])state_dict = {}for k,v in weight_files.items():weights_path = os.path.join("Mixtral-8x7B", v)with safe_open(weights_path, framework="pt") as f:for k in f.keys():state_dict[k] = f.get_tensor(k)model.load_state_dict(state_dict, strict=True)get_mem_info("LoadState")print("-----------------------")engine = deepspeed.init_inference(model,tensor_parallel={"tp_size": world_size},dtype=torch.float16,replace_with_kernel_inject=False)device=get_accelerator().current_device_name()print("device:",device)torch.manual_seed(2)input_tokens=torch.randint(0,32000,(1,128)).to(device)output=engine(input_tokens)output=output.logits.detach().reshape(-1).cpu().numpy()[:8]if rank==0:print(output)if __name__ == "__main__":main()
EOF
deepspeed --num_gpus=4 open_model.py

输出:


Init RANK:1 RSS: 270.02MB VMS:3414.44MB
Init RANK:3 RSS: 270.43MB VMS:3414.45MB
Init RANK:2 RSS: 270.22MB VMS:3414.45MB
Init RANK:0 RSS: 270.38MB VMS:3486.45MBModelCreate RANK:0 RSS: 6757.33MB VMS:9965.12MB
ModelCreate RANK:3 RSS: 6727.30MB VMS:9862.06MB
ModelCreate RANK:2 RSS: 6757.18MB VMS:9893.12MB
ModelCreate RANK:1 RSS: 6756.99MB VMS:9893.12MBLoadState RANK:2 RSS: 13248.96MB VMS:22772.97MB
LoadState RANK:0 RSS: 13245.91MB VMS:22616.97MB
LoadState RANK:3 RSS: 13233.00MB VMS:22490.91MB
LoadState RANK:1 RSS: 13246.22MB VMS:23240.97MB[-0.96240234 -0.36547852  0.7680664   1.703125   -0.17382812  0.359375-0.49169922 -0.5883789 ]

5.分别保存DS 4TP每个rank上engine.module的权值

tee open_model.py <<-'EOF'
import torch
import os
import psutil
import time
from transformers.modeling_utils import load_sharded_checkpoint,load_state_dict
import deepspeed
from deepspeed.accelerator import get_accelerator
import json
from safetensors import safe_open
from safetensors.torch import save_file, load_filedeepspeed.init_distributed(dist_backend='nccl')
world_size = torch.distributed.get_world_size()
local_rank=int(os.environ['LOCAL_RANK'])
rank=torch.distributed.get_rank()def get_mem_info(prefix):pid = os.getpid()current_process = psutil.Process(pid)memory_info = current_process.memory_info()print(f"{prefix} RANK:{os.environ['LOCAL_RANK']} RSS: {memory_info.rss / (1024 * 1024):.2f}MB VMS:{memory_info.vms / (1024 * 1024):.2f}MB")def save_state_dict(state_dict,save_dir):max_bytes_per_file = 1 * 1024 * 1024 * 1024  # 1GB# 计算每个 tensor 的大小并拆分 state_dictsplit_state_dicts = []current_state_dict = {}current_size = 0for param_name, param_tensor in state_dict.items():tensor_size = param_tensor.element_size() * param_tensor.nelement()# 如果当前 tensor 超过了文件大小,先保存已有 tensorsif current_size + tensor_size > max_bytes_per_file:split_state_dicts.append(current_state_dict)current_state_dict = {}current_size = 0current_state_dict[param_name] = param_tensorcurrent_size += tensor_size# 添加最后一个 state_dictif current_state_dict:split_state_dicts.append(current_state_dict)# 保存拆分后的 state_dicts 并生成索引文件os.makedirs(save_dir, exist_ok=True)index = {"metadata": {"total_parts": len(split_state_dicts)},"weight_map": []}for i, sd in enumerate(split_state_dicts):part_file = os.path.join(save_dir, f"model_part_{i}.safetensors")save_file(sd, part_file)index["weight_map"].append(f"model_part_{i}.safetensors")# 保存索引文件index_file = os.path.join(save_dir, "index.json")with open(index_file, 'w') as f:json.dump(index, f, indent=4)def main():from transformers import MixtralForCausalLM, MixtralConfigget_mem_info("Init")config=MixtralConfig.from_pretrained("./config.json")model = MixtralForCausalLM(config).half()get_mem_info("ModelCreate")print("-----------------------")with open("Mixtral-8x7B/model.safetensors.index.json", "r") as file:index_data = json.load(file)weight_files = index_data.get('weight_map', [])state_dict = {}for k,v in weight_files.items():weights_path = os.path.join("Mixtral-8x7B", v)with safe_open(weights_path, framework="pt") as f:for k in f.keys():state_dict[k] = f.get_tensor(k)model.load_state_dict(state_dict, strict=True)get_mem_info("LoadState")print("-----------------------")engine = deepspeed.init_inference(model,tensor_parallel={"tp_size": world_size},dtype=torch.float16,replace_with_kernel_inject=False)save_state_dict(engine.module.state_dict(), f"./Mixtral-8x7B-{local_rank}")
if __name__ == "__main__":main()
EOF
deepspeed --num_gpus=4 open_model.py
du Mixtral-8x7B-* -lh

输出

1.7G    Mixtral-8x7B-0
1.7G    Mixtral-8x7B-1
1.7G    Mixtral-8x7B-2
1.7G    Mixtral-8x7B-3

6.DS 4TP推理,init_empty_weights初始化模型,每个rank加载自己engine.module的权值

tee open_model.py <<-'EOF'
import torch
import os
import psutil
import time
from accelerate import init_empty_weights
from transformers.modeling_utils import load_sharded_checkpoint,load_state_dict
import deepspeed
from deepspeed.accelerator import get_accelerator
import json
from safetensors import safe_open
from safetensors.torch import save_file, load_filedeepspeed.init_distributed(dist_backend='nccl')
world_size = torch.distributed.get_world_size()
local_rank=int(os.environ['LOCAL_RANK'])
rank=torch.distributed.get_rank()def get_mem_info(prefix):pid = os.getpid()current_process = psutil.Process(pid)memory_info = current_process.memory_info()print(f"{prefix} RANK:{os.environ['LOCAL_RANK']} RSS: {memory_info.rss / (1024 * 1024):.2f}MB VMS:{memory_info.vms / (1024 * 1024):.2f}MB")def my_load_state_dict(model,save_dir):index_file = os.path.join(save_dir, "index.json")with open(index_file, "r") as file:index_data = json.load(file)weight_files = index_data.get('weight_map', [])state_dict = {}for v in weight_files:weights_path = os.path.join(save_dir, v)with safe_open(weights_path, framework="pt") as f:for k in f.keys():state_dict[k] = f.get_tensor(k)model.load_state_dict(state_dict, strict=True)def main():from transformers import MixtralForCausalLM, MixtralConfigget_mem_info("Init")config=MixtralConfig.from_pretrained("./config.json")with init_empty_weights():model = MixtralForCausalLM(config).half()get_mem_info("ModelCreate")print("-----------------------")buffer_dict = {}for name, param in model.named_buffers():buffer_dict[name] = paramengine = deepspeed.init_inference(model,tensor_parallel={"tp_size": world_size},dtype=torch.float16,replace_with_kernel_inject=False)my_load_state_dict(engine.module,f"./Mixtral-8x7B-{local_rank}")for name, param in engine.module.named_buffers():param.copy_(buffer_dict[name])get_mem_info("LoadState")device=get_accelerator().current_device_name()torch.manual_seed(2)input_tokens=torch.randint(0,32000,(1,128)).to(device)output=engine(input_tokens)output=output.logits.detach().reshape(-1).cpu().numpy()[:8]if rank==0:print(output)
if __name__ == "__main__":main()
EOF
deepspeed --num_gpus=4 open_model.py

输出


Init RANK:1 RSS: 269.73MB VMS:3382.40MB
Init RANK:2 RSS: 269.45MB VMS:3382.39MB
Init RANK:3 RSS: 269.86MB VMS:3382.39MB
Init RANK:0 RSS: 269.96MB VMS:3454.39MBModelCreate RANK:1 RSS: 300.44MB VMS:17064.71MB
ModelCreate RANK:0 RSS: 297.03MB VMS:17136.70MB
ModelCreate RANK:2 RSS: 299.22MB VMS:17064.70MB
ModelCreate RANK:3 RSS: 300.66MB VMS:17065.70MBLoadState RANK:0 RSS: 366.28MB VMS:20159.03MB
LoadState RANK:3 RSS: 369.87MB VMS:20152.03MB
LoadState RANK:2 RSS: 368.37MB VMS:20151.02MB
LoadState RANK:1 RSS: 369.16MB VMS:20087.04MB[-0.96240234 -0.36547852  0.7680664   1.703125   -0.17382812  0.359375-0.49169922 -0.5883789 ]

这篇关于MixtralForCausalLM DeepSpeed Inference节约HOST内存【最新的方案】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069990

相关文章

Javaee多线程之进程和线程之间的区别和联系(最新整理)

《Javaee多线程之进程和线程之间的区别和联系(最新整理)》进程是资源分配单位,线程是调度执行单位,共享资源更高效,创建线程五种方式:继承Thread、Runnable接口、匿名类、lambda,r... 目录进程和线程进程线程进程和线程的区别创建线程的五种写法继承Thread,重写run实现Runnab

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Qt QCustomPlot库简介(最新推荐)

《QtQCustomPlot库简介(最新推荐)》QCustomPlot是一款基于Qt的高性能C++绘图库,专为二维数据可视化设计,它具有轻量级、实时处理百万级数据和多图层支持等特点,适用于科学计算、... 目录核心特性概览核心组件解析1.绘图核心 (QCustomPlot类)2.数据容器 (QCPDataC

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的

SQLite3 在嵌入式C环境中存储音频/视频文件的最优方案

《SQLite3在嵌入式C环境中存储音频/视频文件的最优方案》本文探讨了SQLite3在嵌入式C环境中存储音视频文件的优化方案,推荐采用文件路径存储结合元数据管理,兼顾效率与资源限制,小文件可使用B... 目录SQLite3 在嵌入式C环境中存储音频/视频文件的专业方案一、存储策略选择1. 直接存储 vs