Tensorflow-GPU工具包了解和详细安装方法

2024-06-17 12:36

本文主要是介绍Tensorflow-GPU工具包了解和详细安装方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

基础知识信息了解

显卡算力

CUDA兼容

Tensorflow gpu安装

CUDA/cuDNN匹配和下载

查看Conda driver的版本

下载CUDA工具包

查看对应cuDNN版本

下载cuDNN加速库

CUDA/cuDNN安装

CUDA安装方法

cuDNN加速库安装

配置CUDA/cuDNN环境变量

配置环境变量

核验是否安装成功

Tensorflow-gpu安装

命令安装

报错处理

核验安装结果


直通车:人工智能发展历程和工具搭建学习-CSDN博客

        通过之前的文章学习,我们已经安装好了Anaconda和Tensorflow2.4,但是在后期的学习中,会涉及到神经网络的学习等数据量较大的操作,普通的tensorflow-cpu版本处理速度较慢,所以我们再安装一个更加强大的tensorflow-gpu版本,它可以调用conda的接口实现gpu运算的平台,利用显卡帮助我们运算程序,以提高后期学习中的程序处理速度,提高学习效率。

基础知识信息了解

显卡算力

        在这个之前,我们首先要确保自己的电脑是英伟达显卡,并且运算能力在3.5以上,大家可以根据下面的网址查看自己电脑显卡的运算能力,然后还需要下载conda工具包和对应的gpu加速库cuDNN。

直通车:CUDA GPUs - Compute Capability | NVIDIA Developer

        后期安装CUDA通过deviceQuery.exe也可以看到当前显卡的算力。

CUDA兼容

        这里CUDA12.1是支持的最高版本的CUDA,可以向下兼容,且可以安装多个版本的CUDA,你可以通过更改环境变量来更改为你需要用到的CUDA版本。

Tensorflow gpu安装

CUDA/cuDNN匹配和下载

查看Conda driver的版本

        我们打开命令行窗口cmd,输入nvidia-smi,这里显示的是显卡的版本信息,这里显示的是conda driver的版本信息。

下载CUDA工具包

        直通车:CUDA Toolkit Archive | NVIDIA Developer

        我们去conda下载官网,下载CUDA工具包。根据刚刚我们查到的CUDA版本信息,此处我的CUDA版本为12.x,根据CUDA可以向下兼容的特性,我们可以对应下载CUDA11.4的工具包。

        在这个界面,由于我的电脑是Windows11 64位,所以我选择的是这些选项,大家要根据自己的电脑系统类型选择合适的版本进行下载。

查看对应cuDNN版本

下面查找对应的cuDNN版本,可以在Tensorflows官网中查看tensorflow-gpu跟cuda cudnn的版本对应信息.

在 Windows 环境中从源代码构建  |  TensorFlow

下载cuDNN加速库

        接下来我们打开cuDNN下载地址:

直通车:https://developer.nvidia.com/rdp/cudnn-archive

        由于我们CUDA是11的版本 对应的是cuDNN8的版本,这些版本的对应,小伙伴们一定要注意!现在我们打开cuDNN下载官网,在这里,根据刚刚查看到的cuda版本,选择适当的cuDNN版本,我刚下载的是CUDA11.4的版本,也就是CUDA11.x的版本,所以我选择的是cuDNN8.x的版本,这里我下载版本为8.2.1,然后选择windows x86的选项进行下载。

        注意:在这里点击下载的时候会跳转到注册登录页面,由于在这里我已经登录,所以没有跳转,等待安装包下载完成,我们就准备好了Tensorflow-gpu所需要的工具包,这就是已经下载好的工具包。

        如果各位小伙伴在这里遇到问题无法解决,可以在评论区进行求助。

CUDA/cuDNN安装

CUDA安装方法

        接下来我们开始安装CUDA,双击打开下载的安装包,并等待进度条加载完毕。

        点击同意并继续选择自定义,然后点击下一步。在这个界面显示的是将要安装的组件名称、版本号和电脑中该组件的版本号,当前版本号为空,则说明电脑中没有该组件。

        我们取消NVIDIA GeForce Experience这一项,然后点击下一步。这里的安装路径一般选择默认就好,也可以更改,但是文件目录一定要记清楚,后面配置环境的时候会用到

然后点击下一步,点击next,等待安装完成。

然后点击下一步,这里显示的是已经安装的所有组件的状态,然后点击关闭。

cuDNN加速库安装

        下面开始安装Gpu加速库cuDNN,将文件解压,解压完成以后,我们打开会得到如下三个目录。

        然后我们打开刚刚安装好的CUDA的根目录,然后把codnn里边并目录下的所有文件复制到CUDA的bin目录如下。

        将include里边的所有文件复制到CUDA的include文件下,lib文件夹也是如此。这样我们便完成了CUDA和cuDNN的安装。

配置CUDA/cuDNN环境变量

配置环境变量

        下面开始设置系统环境变量,右键点击此电脑,选择属性打开高级系统,设置环境变量,在系统变量里面找到path,点击编辑。我们可以看到CUDA的两个文件已经存在,点击新建浏览,找到CUDA目录。

将其上移,与其他两个环境变量一起,这样就完成了环境变量的设置。

核验是否安装成功

        可以通过nvcc -V命令查看是否配置CUDA成功

        输入nvidia-smi命令,返回GPU型号则安装成功

         同时也可以通过在CUDA执行bandwidthTest.exe和deviceQuery.exe和核验,返回PASS则表明GPU安装成功

Tensorflow-gpu安装

        接下来我们开始安装tensorflow-gpu,安装过程可以参考上篇文章tensnflow2.4的安装,这里我就不再详述。不同之处,就是我们创建并激活另一个独立环境tensorflow-gpu选择适当的版本号,小伙伴们可以根据自己的安装环境选择对应的版本安装,第二步是安装相关软件,在第三步的时候安装tensorflow-gpu,命令为pip install tensorflow-gpu==对应版本号安装完成以后就完成了tensorflow-gpu的安装。

直通车:人工智能发展历程和工具搭建学习-CSDN博客

命令安装

创建独立环境并激活

conda create -n tensorflow-gpu python==3.8conda activate tensorflow-gpu

安装相关软件包

​
# conda install numpy matplotlib PIL scikit-learn pandas 于下行命令等价pip install numpy matplotlib Pillow scikit-learn pandas -i Simple Index

安装Tensorflow-gpu

​
pip install tensorflow-gpu==2.6.0 -i Simple Index

报错处理

        ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. matplotlib 3.7.5 requires numpy<2,>=1.20, but you have numpy 1.19.5 which is incompatible. pandas 2.0.3 requires numpy>=1.20.3; python_version < "3.10", but you have numpy 1.19.5 which is incompatible.

pip uninstall numpypip install numpy==1.19.5

        TypeError: Descriptors cannot be created directly. If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0. If you cannot immediately regenerate your protos, some other possible workarounds are: 1. Downgrade the protobuf package to 3.20.x or lower. 2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).

pip uninstall protobuf pip install protobuf==3.20.0

校验安装结果

        最后我们测试一下是否安装成功,打开命令行窗口,激活我们刚才创建的独立环境。输入python,打开python交互模式,输入import tensorflow as tf,输入我们的测试语句tf.test.is_gpu_available(),它的输出结果为true,显示我们安装成功。

python
import tensorflow as tftf.test.is_gpu_available()exit()

这篇关于Tensorflow-GPU工具包了解和详细安装方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069455

相关文章

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

Jsoncpp的安装与使用方式

《Jsoncpp的安装与使用方式》JsonCpp是一个用于解析和生成JSON数据的C++库,它支持解析JSON文件或字符串到C++对象,以及将C++对象序列化回JSON格式,安装JsonCpp可以通过... 目录安装jsoncppJsoncpp的使用Value类构造函数检测保存的数据类型提取数据对json数

mac安装redis全过程

《mac安装redis全过程》文章内容主要介绍了如何从官网下载指定版本的Redis,以及如何在自定义目录下安装和启动Redis,还提到了如何修改Redis的密码和配置文件,以及使用RedisInsig... 目录MAC安装Redis安装启动redis 配置redis 常用命令总结mac安装redis官网下

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

最新版IDEA配置 Tomcat的详细过程

《最新版IDEA配置Tomcat的详细过程》本文介绍如何在IDEA中配置Tomcat服务器,并创建Web项目,首先检查Tomcat是否安装完成,然后在IDEA中创建Web项目并添加Web结构,接着,... 目录配置tomcat第一步,先给项目添加Web结构查看端口号配置tomcat    先检查自己的to

Apache Tomcat服务器版本号隐藏的几种方法

《ApacheTomcat服务器版本号隐藏的几种方法》本文主要介绍了ApacheTomcat服务器版本号隐藏的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1. 隐藏HTTP响应头中的Server信息编辑 server.XML 文件2. 修China编程改错误

使用Nginx来共享文件的详细教程

《使用Nginx来共享文件的详细教程》有时我们想共享电脑上的某些文件,一个比较方便的做法是,开一个HTTP服务,指向文件所在的目录,这次我们用nginx来实现这个需求,本文将通过代码示例一步步教你使用... 在本教程中,我们将向您展示如何使用开源 Web 服务器 Nginx 设置文件共享服务器步骤 0 —

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结