DAG(有向无环图)-入门基础

2024-06-17 08:12
文章标签 基础 入门 dag 环图

本文主要是介绍DAG(有向无环图)-入门基础,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、图基础
    • 1. 图
    • 2. 基础术语
    • 3. 有向图
    • 3. 有向无环图
  • 二、DAG算法基础
    • 1. 什么是DAG
      • 1. 图论算法——有向无环图
  • 三、参考

一、图基础

1. 图

图是数据结构中最为复杂的一种,图主要包括:

  • 无向图,结点的简单连接
  • 有向图,连接有方向性
  • 加权图,连接带有权值
  • 加权有向图,连接既有方向性,又带有权值

图是由一组顶点和一组能够将两个顶点相连的边组成。

2. 基础术语

  • 顶点:图中的一个点
  • :连接两个顶点的线段叫做边,edge
  • 相邻的:一个边的两头的顶点称为是相邻的顶点
  • 度数:由一个顶点出发,有几条边就称该顶点有几度,或者该顶点的度数是几,degree
  • 路径:通过边来连接,按顺序的从一个顶点到另一个顶点中间经过的顶点集合
  • 简单路径:没有重复顶点的路径
  • 环:至少含有一条边,并且起点和终点都是同一个顶点的路径
  • 简单环:不含有重复顶点和边的环
  • 连通的:当从一个顶点出发可以通过至少一条边到达另一个顶点,我们就说这两个顶点是连通的
  • 连通图:如果一个图中,从任意顶点均存在一条边可以到达另一个任意顶点,我们就说这个图是个连通图
  • 无环图:是一种不包含环的图
  • 稀疏图:图中每个顶点的度数都不是很高,看起来很稀疏
  • 稠密图:图中的每个顶点的度数都很高,看起来很稠密
  • 二分图:可以将图中所有顶点分为两部分的图

树其实就是一种无环连通图。

3. 有向图

有向图是一幅有方向性的图,由一组顶点和有向边组成。

在有向图中,顶点被细分为了:

  • 出度:由一个顶点出发的边的总数
  • 入度:指向一个顶点的边的总数

由于有向图的方向性,一条边的出发点称为头,指向点称为尾。
图的连通性在有向图中表现为可达性,由于边的方向性,可达性必须是通过顶点出发的边的正确方向,与另一个顶点可连通。

可达性的一种应用:垃圾收集。

我们都知道一般的对象垃圾收集都是计算它的引用数。在图结构中,把对象作为顶点,引用作为边,当一个对象在一段时间内未被他人引用的时候,这个顶点就是孤立的,对于其他有效路径上的顶点来说它就是不可达的,因此就不会被标记,这时候,例如JVM就会清除掉这些对象释放内存,所以JVM也是一直在跑类似以上这种DFS的程序,不断找到那些未被标记的顶点,按照一定时间规则进行清除。

3. 有向无环图

不包含有向环的有向图就是有向无环图,DAG,Directed Acyclic Graph。

二、DAG算法基础

1. 什么是DAG

Merkle DAG的全称是 Merkle directed acyclic graph(默克有向无环图)。它是在Merkle tree基础上构建的,Merkle tree是由美国计算机学家merkle于1979年申请的专利。Merkle DAG跟Merkle tree很相似,但不完全一样,比如:Merkle DAG不需要进行树的平衡操作,非叶子节点允许包含数据等。

1. 图论算法——有向无环图

【推荐-讲的很通俗易懂】『学概念找员外』有向无环图DAG的用途
参考URL: https://www.jianshu.com/p/e8e482a95479

图是数据结构中最为复杂的一种,图在信息化社会中的应用非常广泛。

图主要包括:

  • 无向图,结点的简单连接
  • 有向图,连接有方向性
  • 加权图,连接带有权值
  • 加权有向图,连接既有方向性,又带有权值

图是由一组顶点和一组能够将两个顶点相连的边组成。 树其实就是一种无环连通图。

术语

  • 顶点:图中的一个点
  • 边:连接两个顶点的线段叫做边,edge
  • 相邻的:一个边的两头的顶点称为是相邻的顶点
  • 度数:由一个顶点出发,有几条边就称该顶点有几度,或者该顶点的度数是几,degree
  • 路径:通过边来连接,按顺序的从一个顶点到另一个顶点中间经过的顶点集合
  • 简单路径:没有重复顶点的路径
    -连通的:当从一个顶点出发可以通过至少一条边到达另一个顶点,我们就说这两个顶点是连通的
  • 连通图:如果一个图中,从任意顶点均存在一条边可以到达另一个任意顶点,我们就说这个图是个连通图
  • 无环图:是一种不包含环的图
  • 稀疏图:图中每个顶点的度数都不是很高,看起来很稀疏
  • 稠密图:图中的每个顶点的度数都很高,看起来很稠密
  • 二分图:可以将图中所有顶点分为两部分的图

有向图
有向图是一幅有方向性的图,由一组顶点和有向边组成。所以,大白话来讲,有向图是包括箭头来代表方向的。

常见的例如食物链,网络通信等都是有向图的结构。

在有向图中,顶点被细分为了:

  • 出度:由一个顶点出发的边的总数
  • 入度:指向一个顶点的边的总数

由于有向图的方向性,一条边的出发点称为头,指向点称为尾。
图的连通性在有向图中表现为可达性,由于边的方向性,可达性必须是通过顶点出发的边的正确方向,与另一个顶点可连通。

有向无环图:
有向无环图就是从一个图中的任何一点出发,不管走过多少个分叉路口,都没有回到原来这个点的可能性。

三、参考

科普 | 一文读懂 DAG(有向无环图)技术
参考URL: https://baijiahao.baidu.com/s?id=1613728387077554506&wfr=spider&for=pc
拓扑排序-有向无环图(DAG, Directed Acyclic Graph)
参考URL: https://www.cnblogs.com/shoulinniao/p/10395815.html
Spark中的有向无环图(DAG:Directed Acyclic Graph)
参考URL: https://www.pianshen.com/article/38531455651/
基于有向无环图(DAG)的任务调度Demo
参考URL: https://blog.csdn.net/dbqb007/article/details/89042984
算法精解:DAG有向无环图
参考URL: https://www.cnblogs.com/Evsward/p/dag.html
五分钟讲明白DAG(有向无环图)的优缺点
参考URL: https://baijiahao.baidu.com/s?id=1602410984624790167&wfr=spider&for=pc

这篇关于DAG(有向无环图)-入门基础的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1068905

相关文章

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

Java 创建图形用户界面(GUI)入门指南(Swing库 JFrame 类)概述

概述 基本概念 Java Swing 的架构 Java Swing 是一个为 Java 设计的 GUI 工具包,是 JAVA 基础类的一部分,基于 Java AWT 构建,提供了一系列轻量级、可定制的图形用户界面(GUI)组件。 与 AWT 相比,Swing 提供了许多比 AWT 更好的屏幕显示元素,更加灵活和可定制,具有更好的跨平台性能。 组件和容器 Java Swing 提供了许多

【IPV6从入门到起飞】5-1 IPV6+Home Assistant(搭建基本环境)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant #搭建基本环境 1 背景2 docker下载 hass3 创建容器4 浏览器访问 hass5 手机APP远程访问hass6 更多玩法 1 背景 既然电脑可以IPV6入站,手机流量可以访问IPV6网络的服务,为什么不在电脑搭建Home Assistant(hass),来控制你的设备呢?@智能家居 @万物互联

poj 2104 and hdu 2665 划分树模板入门题

题意: 给一个数组n(1e5)个数,给一个范围(fr, to, k),求这个范围中第k大的数。 解析: 划分树入门。 bing神的模板。 坑爹的地方是把-l 看成了-1........ 一直re。 代码: poj 2104: #include <iostream>#include <cstdio>#include <cstdlib>#include <al

MySQL-CRUD入门1

文章目录 认识配置文件client节点mysql节点mysqld节点 数据的添加(Create)添加一行数据添加多行数据两种添加数据的效率对比 数据的查询(Retrieve)全列查询指定列查询查询中带有表达式关于字面量关于as重命名 临时表引入distinct去重order by 排序关于NULL 认识配置文件 在我们的MySQL服务安装好了之后, 会有一个配置文件, 也就

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close