DP:01背包问题

2024-06-17 07:20
文章标签 问题 dp 01 背包

本文主要是介绍DP:01背包问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、背包问题的概述

背包问题是⼀种组合优化的NP完全问题。
本质上是为了找出“带有限制条件的组合最优解”

1、根据物品的个数,分为如下几类:

• 01背包问题:每个物品只有⼀个(重点掌握)
• 完全背包问题:每个物品有无限多个(重点掌握)

• 多重背包问题:每件物品最多有n个
• 混合背包问题:每个物品会有上⾯三种情况
• 分组背包问题:物品有n组,每组物品⾥有若⼲个,每组⾥最多选⼀个物品

2、根据背包是否装满,⼜分为两类

• 不⼀定装满背包(重点)
• 背包⼀定装满(重点)

3、优化方案

• 空间优化:滚动数组(重点掌握)
• 单调队列优化
• 贪心优化

4、根据限定条件的个数,⼜分为两类

• 限定条件只有⼀个:比如体积->普通的背包问题(重点)
• 限定条件有两个:比如体积+重量->⼆维费用背包问题(重点)

5、根据不同的问法,⼜分为很多类:

• 输出方案
• 求方案总数
• 最优方案
• 方案可行性

        背包问题的题型非常多样,其中最重要以及基础的就是01背包和完全背包以及背包是否装满的讨论(会通过牛客的两道模版题探究),还有滚动数组的优化策略( 在以往的动态规划中,我们几乎很少去谈论空间优化,因为对于一道dp题来说,能解决出来就已经很不容易了,我们不太会关注其空间复杂度。但是在背包问题中,滚动数组的优化是有一定套路可言的,并且在某些情况下对时间也是有一定优化的!!

二、01背包[模版]

【模板】01背包_牛客题霸_牛客网

#include<iostream>
#include<string.h>
using namespace std;
//定义成全局,就不用在栈里面进行初始化,并且我们可以在栈上开辟的空间更大const int N=1001;
int n,V,v[N],w[N];
int dp[N][N];int main() 
{cin>>n>>V;//个数和体积for(int i=1;i<=n;++i) cin>>v[i]>>w[i];//解决第一问for(int i=1;i<=n;++i)for(int j=1;j<=V;++j){dp[i][j]=dp[i-1][j];//不选第i个物品的情况if(j>=v[i]) dp[i][j]=max(dp[i][j],dp[i-1][j-v[i]]+w[i]);}   cout<<dp[n][V]<<endl;//解决第二问memset(dp,0,sizeof dp);//修改成0//先进行初始化for(int j=1;j<=V;++j) dp[0][j]=-1;//跟0区分开for(int i=1;i<=n;++i)for(int j=1;j<=V;++j){dp[i][j]=dp[i-1][j];//不选第i个物品的情况if(j>=v[i]&&dp[i-1][j-v[i]]!=-1) dp[i][j]=max(dp[i][j],dp[i-1][j-v[i]]+w[i]);}   cout<<(dp[n][V]==-1?0:dp[n][V])<<endl;
}

滚动数组优化(空间复杂度N^2——>N   时间复杂度常数提升

#include<iostream>
#include<string.h>
using namespace std;
//定义成全局,就不用在栈里面进行初始化,并且我们可以在栈上开辟的空间更大
const int N=1001;
int n,V,v[N],w[N];
int dp[N][N];int main() 
{cin>>n>>V;//个数和体积for(int i=1;i<=n;++i) cin>>v[i]>>w[i];//解决第一问for(int i=1;i<=n;++i)for(int j=V;j>=v[i];--j)dp[j]=max(dp[j],dp[j-v[i]]+w[i]);cout<<dp[V]<<endl;//解决第二问memset(dp,0,sizeof dp);//修改成0//先进行初始化for(int j=1;j<=V;++j) dp[j]=-0x3f3f3f3f;//跟0区分开for(int i=1;i<=n;++i)for(int j=V;j>=v[i];--j)dp[j]=max(dp[j],dp[j-v[i]]+w[i]);cout<<(dp[V]<0?0:dp[V])<<endl;
}

       对于不存在的状态,因为我们该题中要求的是max,所以我们设成-0x3f3f3f3f保证该状态不被选到,设置成这个的原因是避免了越界的风险同时又保证了不存在的状态是小于0的,且不会影响填报!!

三、和为目标和的最长子序列长度

. - 力扣(LeetCode)

       这题就是非常明显的01背包问题,其中每个数只有选或者不选,目标值相当于是容量,且要刚刚好。 dp[i][j]表示从前i个数选,和恰好为j的最长子序列。

class Solution {
public:int lengthOfLongestSubsequence(vector<int>& nums, int target) {int n=nums.size();//01背包问题  dp[i][j]表示从前i个数选择 正好凑成j的的子序列的最长长度vector<vector<int>> dp(n+1,vector<int>(target+1));//分析状态转移方程 dp[i][j] //如果我不选i dp[i-1][j]//如果我选i   dp[i-1][j-nums[i-1]]+1 //初始化 如果i为0无数可选  没有这个状态for(int j=1;j<=target;++j) dp[0][j]=-0x3f3f3f3f;//给一个小的值  保证选最大值的时不会被选上for(int i=1;i<=n;++i)for(int j=0;j<=target;++j){dp[i][j]=dp[i-1][j];if(j>=nums[i-1]) dp[i][j]=max(dp[i][j],dp[i-1][j-nums[i-1]]+1);}return dp[n][target]<0?-1:dp[n][target];}
};

滚动数组优化:

class Solution {
public:int lengthOfLongestSubsequence(vector<int>& nums, int target) {int n=nums.size();//01背包问题  dp[i][j]表示从前i个数选择 正好凑成j的的子序列的最长长度vector<int> dp(target+1,-0x3f3f3f3f);//分析状态转移方程 dp[i][j] //如果我不选i dp[i-1][j]//如果我选i   dp[i-1][j-nums[i-1]]+1 //初始化 如果i为0无数可选  没有这个状态dp[0]=0;for(int i=1;i<=n;++i)for(int j=target;j>=nums[i-1];--j)dp[j]=max(dp[j],dp[j-nums[i-1]]+1);return dp[target]<0?-1:dp[target];}
};

四、分割等和子集(需转化)

. - 力扣(LeetCode)

该题并不能直接用01背包问题,首先需要先将问题进行转化——在数组中选一些数,让这些数的和为sum/2。 

class Solution {
public:bool canPartition(vector<int>& nums) {int sum=accumulate(nums.begin(),nums.end(),0);if(sum%2) return false;//是奇数,直接返回//是偶数的时候 dp[i][j]表示从前i个数中选,所有选法中能否凑成j这个数int aim=sum/2;int n=nums.size();vector<vector<bool>> dp(n+1,vector<bool>(aim+1));//初始化,当j=0时,显然都是true  当i=0时,必然为falsefor(int i=0;i<=n;++i) dp[i][0]=true;//开始填表for(int i=1;i<=n;++i)for(int j=1;j<=aim;++j)//不选i的话  dp[i][j]=dp[i-1][j]//选i的话    dp[i][j]=dp[i-1][j-nums[i-1]]   前提j>=nums[i-1]{dp[i][j]=dp[i-1][j];if(j>=nums[i-1]) dp[i][j]=dp[i][j]||dp[i-1][j-nums[i-1]];}return dp[n][aim];}
};

滚动数组优化:

class Solution {
public:bool canPartition(vector<int>& nums) {int sum=accumulate(nums.begin(),nums.end(),0);if(sum%2) return false;//是奇数,直接返回//是偶数的时候 dp[i][j]表示从前i个数中选,所有选法中能否凑成j这个数int aim=sum/2;int n=nums.size();vector<bool> dp(aim+1);//初始化,当j=0时,显然都是true  当i=0时,必然为falsedp[0]=true;//开始填表for(int i=1;i<=n;++i)for(int j=aim;j>=nums[i-1];--j)//不选i的话  dp[i][j]=dp[i-1][j]//选i的话    dp[i][j]=dp[i-1][j-nums[i-1]]   前提j>=nums[i-1]dp[j]=dp[j]||dp[j-nums[i-1]];return dp[aim];}
};

 五、目标和(需转化)

. - 力扣(LeetCode)

class Solution {
public:int findTargetSumWays(vector<int>& nums, int target) {// 从nums中选择一些数能够凑成sum+target/2  转化成01背包问题int sum=accumulate(nums.begin(),nums.end(),0);int aim=(sum+target)>>1;if(aim<0||(sum+target)%2) return 0;int n=nums.size();//dp[i][j] 从前i个数选 变成j有多少种选法    //如果不选i dp[i-1][j]//如果选i   +=dp[i-1][j-nums[i-1]]//分析初始化 i=0的时候 必为0  j=0的时候 不好判断,因为nums[i]可能是0 //但是不需要初始化,因为要满足j>=nums[i] 那么nums[i]必然要为0才可以满足//所以绝对不会用到斜对角的值,而是只会用到上面的状态。vector<vector<int>> dp(n+1,vector<int>(aim+1));dp[0][0]=1;for(int i=1;i<=n;++i)for(int j=0;j<=aim;++j) {dp[i][j]=dp[i-1][j];if(j>=nums[i-1]) dp[i][j]+=dp[i-1][j-nums[i-1]];}return dp[n][aim];}
};

 滚动数组优化:

class Solution {
public:int findTargetSumWays(vector<int>& nums, int target) {// 从nums中选择一些数能够凑成sum+target/2  转化成01背包问题int sum=accumulate(nums.begin(),nums.end(),0);int aim=(sum+target)>>1;if(aim<0||(sum+target)%2) return 0;int n=nums.size();//dp[i][j] 从前i个数选 变成j有多少种选法    //如果不选i dp[i-1][j]//如果选i   +=dp[i-1][j-nums[i-1]]//分析初始化 i=0的时候 必为0  j=0的时候 不好判断,因为nums[i]可能是0 //但是不需要初始化,因为要满足j>=nums[i] 那么nums[i]必然要为0才可以满足//所以绝对不会用到斜对角的值,而是只会用到上面的状态。vector<int> dp(aim+1);dp[0]=1;for(int i=1;i<=n;++i)for(int j=aim;j>=nums[i-1];--j) dp[j]+=dp[j-nums[i-1]];return dp[aim];}
};

六、最后一块石头的重量||(需转化)

. - 力扣(LeetCode)

class Solution {
public:int lastStoneWeightII(vector<int>& nums) {//让一堆里面的数尽可能接近sum/2int sum=accumulate(nums.begin(),nums.end(),0);int aim=sum/2,n=nums.size();//dp[i][j]表示从前i个数选择,总和不超过j,此时所有元素的最大和vector<vector<int>> dp(n+1,vector<int>(aim+1));//分析初始化 如果都为0 就返回0 如果i为0 也是0  如果j为0 不用初始化for(int i=1;i<=n;++i)for(int j=1;j<=aim;++j){//如果不选i dp[i-1][j]//如果选i  dp[i-1][j-nums[i-1]] 找最大和dp[i][j]=dp[i-1][j];if(j>=nums[i-1]) dp[i][j]=max(dp[i][j],dp[i-1][j-nums[i-1]]+nums[i-1]);}return sum-2*dp[n][aim];}
};

滚动数组优化:

class Solution {
public:int lastStoneWeightII(vector<int>& nums) {//让一堆里面的数尽可能接近sum/2int sum=accumulate(nums.begin(),nums.end(),0);int aim=sum/2,n=nums.size();//dp[i][j]表示从前i个数选择,总和不超过j,此时所有元素的最大和vector<int> dp(aim+1);//分析初始化 如果都为0 就返回0 如果i为0 也是0  如果j为0 不用初始化//如果不选i dp[i-1][j]//如果选i  dp[i-1][j-nums[i-1]] 找最大和for(int i=1;i<=n;++i)for(int j=aim;j>=nums[i-1];--j)dp[j]=max(dp[j],dp[j-nums[i-1]]+nums[i-1]);return sum-2*dp[aim];}
};

七、将一个数字表示成幂的和的方案数

. - 力扣(LeetCode)

知识点1:double不支持取模,需要取模又担心溢出只能使用long long

知识点2:pow函数是求数的任意次幂

知识点3:10^9+7相当于1e9+7

class Solution {
public:int numberOfWays(int n, int x) {//统计方案数//dp[i][j]表示从前i个数的x次幂之和  恰好等于j 的方案数//i=0时 无数可选 方案肯定是const int N=1e9+7;vector<vector<long long>> dp(n+1,vector<long long>(n+1)); //double不支持取模    dp[0][0]=1;for(int i=1;i<=n;++i)for(int j=0;j<=n;++j){//不选i dp[i][j]=dp[i-1][j]//选i   dp[i][j]+=dp[i-1][j-pow(i,x)]dp[i][j]=dp[i-1][j];long long p=pow(i,x); if(j>=p) dp[i][j]+=dp[i-1][j-p];dp[i][j]%=N;}return dp[n][n];}
};

 滚动数组优化:

class Solution {
public:int numberOfWays(int n, int x) {//统计方案数//dp[i][j]表示从前i个数的x次幂之和  恰好等于j 的方案数//i=0时 无数可选 方案肯定是const int N=1e9+7;vector<long long> dp(n+1); //double不支持取模    dp[0]=1;for(int i=1;i<=n;++i){long long p=pow(i,x);for(int j=n;j>=p;--j)//不选i dp[i][j]=dp[i-1][j]//选i   dp[i][j]+=dp[i-1][j-pow(i,x)]dp[j]=(dp[j]+dp[j-p])%N;}return dp[n];}
};

 

这篇关于DP:01背包问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1068800

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

SpringBoot+Redis防止接口重复提交问题

《SpringBoot+Redis防止接口重复提交问题》:本文主要介绍SpringBoot+Redis防止接口重复提交问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录前言实现思路代码示例测试总结前言在项目的使用使用过程中,经常会出现某些操作在短时间内频繁提交。例