HIVE及SparkSQL优化经验

2024-06-17 07:04
文章标签 优化 经验 hive sparksql

本文主要是介绍HIVE及SparkSQL优化经验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

针对高耗跑批时间长的作业,在公司近3个月做过一个优化专项;优化成效:综合cpu、内存、跑批耗时减少均在65%以上;

cpu和内存消耗指的是:vcoreseconds和memoryseconds

这里简单说下优化的一些思路,至于优化细节之前写过两篇,或可参考::
sparksql优化:https://blog.csdn.net/me_to_007/article/details/130916946
hive优化:https://blog.csdn.net/me_to_007/article/details/126921955

运行环境:yarn调度+hdfs存储(orc格式表)+hive2+spark2.4.3

大家有什么经验,也欢迎补充、指正

什么样的任务值得关注

一个作业运行时间很长就值得关注吗?不一定,如果一个用户把n段逻辑全都整到一个作业里,不是太长,跑批时耗在数仓规范范围内,可能也是可接受合理的;

这里将时间界限监控到stage层面,对应hive就是每一个job,在sparksql里就是每一个stage;一个作业跑批时间很长可能是合理的,也许是逻辑复杂由很多个stage构成;但是一个stage跑批时间很长,在分布式计算里,一般不正常;

hive的stage可以只有map逻辑,也可以是一段mr、union、limit语句;sparksql的stage则根据有无shuffle划分,遇到shuffle宽依赖则新划分一个stage;

这个时间界限可以根据经验及要求灵活设置,比如要尽可能地提升作业跑批时效和节省结算资源,那这个界限可以设置小点,比如一个小时;一般几十亿的数据join,没有倾斜、发散,一个小时也够了;

另外一方面是监控内存配置,hive里边的map和reduce内存配置,sparksql里的executor内置配置,这些参数都不应该设置过大;每个task的内存界限可以设置到4个g
hive里边map和reduce内存是单独设置的,sparksql单个task的内存约等于:单个executor内存/每个executor cpu核数 * 每个task跑批cpu核数(这个参数默认是1,一般不做额外设置)

hive-map内存参数:mapreduce.map.memory.mb
hive-reduce内存参数:mapreduce.reduce.memory.mb
sparksql-executor内存参数:spark.executor.memory
sparksql-executor核数:spark.executor.cores
sparksql-每task-cpu核数:spark.task.cpus该参数默认为1,一般无需额外设置;
spark-driver的内存,如果有广播和cahe缓存,需要配置大些,可根据实际情况设置;

配置自动监控

这里可以根据yarn日志,编写定时调度脚本,解析作业日志,将符合异常规则的作业发邮件出来筛查(也可配置短信接口通知作业属主整改);

这里可以手工配置一个白名单,作业如果已经审查无太大优化空间,则加入白名单避开筛查;当然这个白名单也可以设置特定的规则,比如把时间和资源界限的上限配大点,而不是无限放大,避免白名单后界限无限放大;

内存监控则直接读取作业配置参数即可,如触发条件则发邮件到相关团队优化(在我们这是数据治理组)

耗时长有两种情况,一种的倾斜导致的,这种就解决倾斜;另外一种每个task处理数据量都很大,这类情况一般把task数量调大点,再多给点资源;日志解析也比较好处理,倾斜监控作业各个stage中最大task耗时相比一般水平差异,这个界限也可以按需配置;比如我们这里设定为最大task跑批时长-上四分位时长 > 3倍四分差

数据倾斜是一个相对的概念,准确地说,每个作业都有倾斜,但对于一些跑批时间比较短的作业,至于整个数仓盘面来说,优化提升不大;这里可以在监控里筛跳过;

当然至于个别业务团队,视重要性个别对待,有的作业对时效要求比较高,比如涉及到重大活动数据,那就做精细化优化;

考虑到yarn日志文件比较大,解析耗时,集群作业比较多,解析日志应有筛选地进行;那些跑批时间相对短的作业或可暂时搁置;同时配置白名单,防止日志重复读取解析;

怎么去定位问题SQL段

主要是结合执行计划定位,在hive里面执行计划map-tree里显示的表名,如果sql中有写别名,则显示的是别名;为防止筛查混乱,难以定位,sql中的表别名尽量不要使用相同的,没有关联逻辑情况,尽量不要使用别名;

比如下面一段sql:

select group_name,count(1) as cnt 
from tablename   -- 这里不写表别名
group by group_name

在hive中,直接使用explain + sql字符串打印执行计划即可;看看日志里哪个stage异常,再根据执行计划去定位异常sql段落,进而进行作业分析;

explain select dt,count(1) as cnt from tablename group by dt

hive中如果有配置join倾斜参数(set hive.optimize.skewjoin=true)或者groupby倾斜参数(set hive.groupby.skewindata=true),如果作业stage倾斜会额外生成一个stage,这里在执行计划里是看不到的,这个stage紧跟运行在原来的stage后面;

这里需要注意的是,调度环境和我们查看执行计划的环境,引擎配置可能会不一样,我们通过执行计划查看的stage号可能跟实际作业跑批不一致;这里尽量在同一环境下去查看执行计划;

一方面,我们也可以通过yarn里map日志的syslog日志去查看map读取的表名,然后根据使用的表名大概定位到sql段(如果当前stage的数据源都是来自前依赖stage reduce的output则日志里看到的是临时文件名而不是表名)

sparksql,同样的,查看sparkui中stage对应的执行计划(stage二级页面),spark2.4.3中stage的执行计划不是很详细,可以结合数据量,算子然后在sparkui全局执行计划里去找,定位sql语句段;

如果是作业跑批失败,在执行计划中体现为上游依赖stage全跑完了,而这个stage没有打印执行数据(sparksql执行计划每个stage跑完都会显示跑批时间及输出数据)

大概的一些优化方向

  • 优化sql
    每一个作业就好比一个成型的积木,而成型的积木可由不同积木块不同方式拼凑而成,条条大路通罗马;使用怎样的积木块(表)以及怎样的拼凑方式是我们一个优化介入点;比如join顺序,使用不同的表,先聚合在join等(视具体场景,具体处理)

  • 增加stage的task个数
    这类体现为某个stage跑批时间很长但是又没有倾斜,可以适当增加stage的reduce个数;这类现象一般出现在多维聚合、countdistinct数据膨胀,多个表关联包括开窗用的是一个mr(表关联join字段和开窗partitionby字段是同一个字段,计算会优化收拢到一个mr里,具体看执行计划),join数据发散多对多;
    题外:数据量大,一定要reduce个数设置大些吗?
    不一定,如果存在map预聚合,且预聚合能显著减少数据量的,有时候恰恰要手动把reduce配置少点;在hive里可以指定reduce个数mapred.reduce.tasks,亦可结合每reduce处理数据量hive.exec.reducers.bytes.per.reducer+hive.exec.reducers.max动态配置reduce个数(但这个数据量是map逻辑前的数据量,如果有filter筛选,需适当增加.bytes.per.reducer参数,减少reduce个数);sparksql则直接设置spark.sql.shuffle.partitions个数和动态分区参数spark.sql.adaptive.enabled即可;
    有的跑批时间长可能是自定义函数优化做的不到位,这种情况优先使用内置函数或者找相关开发优化自定义函数;字符串处理能不正则的尽量不要用正则

  • 解决倾斜
    如果遇到倾斜,则按常规倾斜处理即可;在具体实践中,我们发现hive倾斜参数机制,优化效果不一定比手动处理要好;比如groupby倾斜参数set hive.groupby.skewindata=true大多时候并不比手工处理要好,这里可以手动打散试试(就是麻烦点,如果逻辑复杂,改起来会很耗时);hive的join的倾斜参数不适用于外连接,这里需要注意下;此外mapjoin不适用于外连接主表是小表的情况(比如小表 left join 大表)

  • 开启并行
    这里主要是针对于hive计算,如果存在stage没有依赖(查看执行计划),可以开启并行执行参数set hive.exec.parallel=true,无依赖的stage可以并行执行,比如union all上下逻辑子句,join中嵌套的子句等;
    sparksql可以通过堆资源来减少跑批时间,但一般不建议设置的总cpu核数大于并发task数量的1/2;官方推荐是task的数据大于cpu总核数的三倍。比如有300个task,那cpu总核数尽量设置在150以下。

在数据体量很大时,我们发现sparksql的map stage耗时比较长,这里可以根据实际情况切换合适的计算引擎;

此外,基于整个作业链路去优化目标作业跑批时效,要基于关键链路去优化,非关键链路作业优化对结果作业产出时间没有影响;

countdistinct,每一个distinct数据都会膨胀一倍;如果countdistinct数量过多,但去重的都是同一个字段,只是条件不同时,改写下sql,shuffle数据量可以显著减少;

比如(假设flag是一个标签字段,字段值只有0和1):

selecet group_name,count(distinct case when flag1=1 then id end) as dis_cnt1,count(distinct case when flag2=1 then id end) as dis_cnt2-- ,...,count(distinct case when flagn=1 then id end) as dis_cntn
from tablename
group by group_name

这里的数据有n个countdistinct,数据膨胀n倍;但让若我们这么改写:

selecet group_name,count(case when flag1=1 then id end) as dis_cnt1,count(case when flag2=1 then id end) as dis_cnt2-- ,...,count(case when flagn=1 then id end) as dis_cntn
(select group_name,id,max(flag1) as flag1,max(flag2) as flag2--,..,max(flagn) as flagnfrom tablenamegroup by group_name,id
) t 
group by group_name

如此,数据没有膨胀,只是多了一个mr成本而已;需注意的是,hive在开启优化后,该改写,可能会合并到一个mr里,具体看执行计划&需求改写;

这篇关于HIVE及SparkSQL优化经验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1068761

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份