大模型算法岗 100 道面试题(含答案)

2024-06-17 03:44

本文主要是介绍大模型算法岗 100 道面试题(含答案),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学.

针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。

汇总合集:

《大模型面试宝典》(2024版) 发布!


截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。

本文总结大模型算法岗位面试题(含答案),内容如下:

一、基础篇

1、目前主流的开源模型体系有哪些?

  • Transformer体系:由Google提出的Transformer 模型及其变体,如BERT、GPT 等。

  • PyTorch Lightning:一个基于PyTorch的轻量级深度学习框架,用于快速原型设计和实验。

  • TensorFlow Model Garden:TensorFlow官方提供的一系列预训练模型和模型架构。

  • Hugging Face Transformers:一个流行的开源库,提供了大量预训练模型和工具,用于NLP 任务。

2、prefix LM 和 causal LM 区别是什么?

prefix LM (前缀语言模型):在输入序列的开头添加一个可学习的任务相关的前缀,然后使用这个前缀

和输入序列一起生成输出。这种方法可以引导模型生成适应特定任务的输出。

causal LM (因果语言模型):也称为自回归语言模型,它根据之前生成的 token 预测下一个token。在

生成文本时,模型只能根据已经生成的部分生成后续部分,不能访问未来的信息。

3、涌现能力是啥原因?

涌现能力 (Emergent Ability) 是指模型在训练过程中突然表现出的新的、之前未曾预料到的能力。这种现象通常发生在大型模型中,原因是大型模型具有更高的表示能力和更多的参数,可以更好地捕捉数据中的模式和关联。

随着模型规模的增加,它们能够自动学习到更复杂、更抽象的概念和规律,从而展现出涌现能力。

3、大模型LLM的架构介绍?

大模型LLM(Large Language Models) 通常采用基于Transformer的架构。Transformer模型由多个编码器或解码器层组成,每个层包含多头自注意力机制和前馈神经网络。这些层可以并行处理输入序列中的所有位置,捕获长距离依赖关系。大模型通常具有数十亿甚至数千亿个参数,可以处理大量的文本数据,并在各种NLP任务中表现出色。

前馈神经网络 (Feedforward Neural Network) 是一种最基础的神经网络类型,它的信息流动是单向的,从输入层经过一个或多个隐藏层,最终到达输出层。在前馈神经网络中,神经元之间的连接不会形成闭环,这意味着信号在前向传播过程中不会回溯。前馈神经网络的基本组成单元是神经元,每个神经元都会对输入信号进行加权求和,然后通过一个激活函数产生输出。激活函数通常是非线性的,它决定了神经元的输出是否应该被激活,从而允许网络学习复杂和非线性的函数。

前馈神经网络在模式识别、函数逼近、分类、回归等多个领域都有应用。例如,在图像识别任务中,网络的输入层节点可能对应于图像的像素值,而输出层节点可能代表不同类别的概率分布。

训练前馈神经网络通常涉及反向传播 (Backpropagation) 算法,这是一种有效的学习算法,通过计算输出层的误差,并将这些误差信号沿网络反向传播,以调整连接权重。通过多次迭代这个过程,网络可以逐渐学习如何减少输出误差,从而实现对输入数据的正确分类或回归。

在设计和训练前馈神经网络时,需要考虑多个因素,包括网络的层数、每层的神经元数目、激活函数的选择、学习速率、正则化策略等,这些都对网络的性能有重要影响。

4、目前比较受欢迎的开源大模型有哪些?

GPT系列:由OpenAl开发的生成式预训练模型,如 GPT-3。

BERT系列:由Google开发的转换式预训练模型,如BERT、RoBERTa等。

T5系列:由Google开发的基于Transformer的编码器-解码器模型,如T5、mT5等。

5、目前大模型模型结构都有哪些?

  • Transformer:基于自注意力机制的模型,包括编码器、解码器和编码器-解码器结构。

  • GPT系列:基于自注意力机制的生成式预训练模型,采用解码器结构。

  • BERT系列:基于自注意力机制的转换式预训练模型,采用编码器结构。

  • T5系列:基于Transformer的编码器-解码器模型。

6、prefix LM 和 causal LM、encoder-decoder 区别及各自有什么优缺点?

prefix LM:通过在输入序列前添加可学习的任务相关前缀,引导模型生成适应特定任务的输 出。优点是可以减少对预训练模型参数的修改,降低过拟合风险;缺点是可能受到前缀表示长度的限制,无法充分捕捉任务相关的信息。

causal LM:根据之前生成的 token预测下一个 token, 可以生成连贯的文本。优点是可以生成灵 活的文本,适应各种生成任务;缺点是无法访问未来的信息,可能生成不一致或有误的内容。

encoder-decoder:由编码器和解码器组成,编码器将输入序列编码为固定长度的向量,解码器 根据编码器的输出生成输出序列。优点是可以处理输入和输出序列不同长度的任务,如机器翻译;缺点是模型结构较为复杂,训练和推理计算量较大。

7、模型幻觉是什么?业内解决方案是什么?模型幻觉是指模型在生成文本时产生的不准确、无关或虚构的信息。这通常发生在模型在缺乏足够信

息的情况下进行推理或生成时。业内的解决方案包括:

使用更多的数据和更高质量的训练数据来提高模型的泛化和准确性。

引入外部知识源,如知识库或事实检查工具,以提供额外的信息和支持。

强化模型的推理能力和逻辑推理,使其能够更好地处理复杂问题和避免幻觉。

8、大模型的Tokenizer的实现方法及原理?

大模型的Tokenizer通常使用字节对编码 (Byte-Pair Encoding,BPE) 算法。BPE算法通过迭代地将最频繁出现的字节对合并成新的符号,来构建一个词汇表。在训练过程中,模型会学习这些符号的嵌入表示。Tokenizer将输入文本分割成符号序列,然后将其转换为模型可以处理的数字表示。

这种方法可以有效地处理大量文本数据,并减少词汇表的规模。

9、ChatGLM3的词表实现方法?

ChatGLM3 使用了一种改进的词表实现方法。它首先使用字节对编码 (BPE) 算法构建一个基本的词表,然后在训练过程中通过不断更新词表来引入新的词汇。具体来说,ChatGLM3 在训练 过程中会根据输入数据动态地合并出现频率较高的字节对,从而形成新的词汇。这样可以有效地处理大量文本数据,并减少词汇表的规模。

同时,ChatGLM3 还使用了一种特殊的词表分割方法,将词表分为多个片段,并在训练过程中逐步更新这些片段,以提高模型的泛化能力和适应性。

10、GPT3、LLAMA、ChatGLM 的 Layer Normalization 的区别是什么?各自的优缺点是什么?

GPT3:采用了Post-Layer Normalization (后标准化)的结构,即先进行自注意力或前馈神经网络的计算,然后进行Layer Normalization。这种结构有助于稳定训练过程,提高模型性能。

LLAMA:采用了Pre-Layer Normalization (前标准化)的结构,即先进行Layer Normalization,然后进行自注意力或前馈神经网络的计算。这种结构有助于提高模型的泛化能力和鲁棒性。

ChatGLM:采用了Post-Layer Normalization的结构,类似于GPT3。这种结构可以提高模型的性能和稳定性。

11、大模型常用的激活函数有哪些?

ReLU(Rectified Linear Unit):一种简单的激活函数,可以解决梯度消失问题,加快训练速度。

GeLU(Gaussian Error Linear Unit):一种改进的ReLU函数,可以提供更好的性能和泛化能力。

Swish:一种自门控激活函数,可以提供非线性变换,并具有平滑和非单调的特性。

12、多查询注意力与群查询注意力是否了解?区别是什么?

Multi-query Attention 和 Grouped-query Attention 是两种不同的注意力机制变种,用于改进和扩展传统的自注意力机制。Multi-query Attention:在Multi-query Attention中,每个查询可以与多个键值对进行交互,从而 捕捉更多的上下文信息。这种机制可以提高模型的表达能力和性能,特别是在处理长序列或复杂关系时。

Grouped-query Attention:在Grouped-query Attention中,查询被分成多个组,每个组内的查询与对应的键值对进行交互。这种机制可以减少计算复杂度,提高效率,同时仍然保持较好的性能。

13、多模态大模型是否有接触?落地案例?

多模态大模型是指可以处理和理解多种模态数据(如文本、图像、声音等)的模型。落地案例,例如:

OpenAI的DALL-E和GPT-3:DALL-E是一个可以生成图像的模型,而GPT-3可以处理和理解文本。两者结合可以实现基于文本描述生成图像的功能。

Google的Multimodal Transformer:这是一个可以同时处理文本和图像的模型,用于各种多模态任务,如图像字幕生成、视觉问答等。

二、进阶篇

1、llama输入句子长度理论上可以无限长吗?

2、什么是LLMs复读机问题?

3、为什么会出现LLMs复读机问题?

4、如何缓解LLMs复读机问题?

5、什么情况用Bert模型,什么情况用LLaMA、ChatGLM类大模型?BERT模型通常用于需要理解文本深层语义的任务,如文本分类、命名实体识别等。

6、各个专业领域是否需要各自的大模型来服务?

7、如何让大模型处理更长的文本?

8、如果想要在某个模型基础上做全参数微调,究竟需要多少显存?

9、为什么SFT之后感觉LLM傻了?

10、SFT指令微调数据如何构建?

11、领域模型Continue PreTrain数据选取?

领域模型继续预训练(Continue Pre-Training)的数据选取应该基于领域内的文本特点和应用需求。通常,需要选取大量、高质量、多样化的领域文本数据。数据可以来自专业文献、行业报告、在线论坛、新闻文章等。数据选取时应该注意避免偏见和不平衡,确保数据能够全面地代表领域内的知识和语言使用。

12、领域数据训练后,通用能力往往会有所下降,如何缓解模型遗忘通用能力?

13、领域模型Continue PreTrain,如何让模型在预训练过程中就学习到更多的知识?

14、进行SFT操作的时候,基座模型选用Chat还是Base?

15、领域模型微调指令&数据输入格式要求?

16、领域模型微调领域评测集构建?

17、领域模型词表扩增是不是有必要的?

18、如何训练自己的大模型?

19、训练中文大模型有啥经验?

20、指令微调的好处?

21、预训练和微调哪个阶段注入知识的?

22、想让模型学习某领域或行业知识,是应该预训练还是应该微调?

23、多轮对话任务如何微调模型?

24、微调后的模型出现能力劣化,灾难性遗忘是怎么回事?

25、微调模型需要多大显存?

26、大模型LLM进行SFT操作的时候在学习什么?

27、预训练和SFT操作有什么不同?

28、样本量规模增大,训练出现OOM报错,怎么解决?

29、大模型LLM进行SFT如何对样本进行优化?

30、模型参数迭代实验步骤?

31、为什么需要进行参选微调?参数微调的原因有哪些?

32、模型参数微调的方式有那些?你最常用哪些方法?

篇幅限制,完整版见

《大模型面试宝典》(2024版) 发布!

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了大模型算法岗技术与面试交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:技术交流
方式②、添加微信号:mlc2040,备注:技术交流

用通俗易懂方式讲解系列

  • 用通俗易懂的方式讲解:自然语言处理初学者指南(附1000页的PPT讲解)
  • 用通俗易懂的方式讲解:1.6万字全面掌握 BERT
  • 用通俗易懂的方式讲解:NLP 这样学习才是正确路线
  • 用通俗易懂的方式讲解:28张图全解深度学习知识!
  • 用通俗易懂的方式讲解:不用再找了,这就是 NLP 方向最全面试题库
  • 用通俗易懂的方式讲解:实体关系抽取入门教程
  • 用通俗易懂的方式讲解:灵魂 20 问帮你彻底搞定Transformer
  • 用通俗易懂的方式讲解:图解 Transformer 架构
  • 用通俗易懂的方式讲解:大模型算法面经指南(附答案)
  • 用通俗易懂的方式讲解:十分钟部署清华 ChatGLM-6B,实测效果超预期
  • 用通俗易懂的方式讲解:内容讲解+代码案例,轻松掌握大模型应用框架 LangChain
  • 用通俗易懂的方式讲解:如何用大语言模型构建一个知识问答系统
  • 用通俗易懂的方式讲解:最全的大模型 RAG 技术概览
  • 用通俗易懂的方式讲解:利用 LangChain 和 Neo4j 向量索引,构建一个RAG应用程序
  • 用通俗易懂的方式讲解:使用 Neo4j 和 LangChain 集成非结构化知识图增强 QA
  • 用通俗易懂的方式讲解:面了 5 家知名企业的NLP算法岗(大模型方向),被考倒了。。。。。
  • 用通俗易懂的方式讲解:NLP 算法实习岗,对我后续找工作太重要了!。
  • 用通俗易懂的方式讲解:理想汽车大模型算法工程师面试,被问的瑟瑟发抖。。。。
  • 用通俗易懂的方式讲解:基于 Langchain-Chatchat,我搭建了一个本地知识库问答系统
  • 用通俗易懂的方式讲解:面试字节大模型算法岗(实习)
  • 用通俗易懂的方式讲解:大模型算法岗(含实习)最走心的总结
  • 用通俗易懂的方式讲解:大模型微调方法汇总

这篇关于大模型算法岗 100 道面试题(含答案)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1068392

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig