可视化理解卷积神经网络-ECCV 2014

2024-06-17 01:18

本文主要是介绍可视化理解卷积神经网络-ECCV 2014,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

可视化理解卷积神经网络

原文地址:http://blog.csdn.net/hjimce/article/details/50544370

作者:hjimce

一、相关理论

本篇博文主要讲解2014年ECCV上的一篇经典文献:《Visualizing and Understanding Convolutional Networks》,可以说是CNN领域可视化理解的开山之作,这篇文献告诉我们CNN的每一层到底学习到了什么特征,然后作者通过可视化进行调整网络,提高了精度。最近两年深层的卷积神经网络,进展非常惊人,在计算机视觉方面,识别精度不断的突破,CVPR上的关于CNN的文献一大堆。然而很多学者都不明白,为什么通过某种调参、改动网络结构等,精度会提高。可能某一天,我们搞CNN某个项目任务的时候,你调整了某个参数,结果精度飙升,但如果别人问你,为什么这样调参精度会飙升呢,你所设计的CNN到底学习到了什么牛逼的特征?(PS:之前领导一直鄙视我,要我解释CNN的每一层到底学习到了什么特征,解答不上来,被鄙视了一番,最后才去学了这篇文献)。

这篇文献的目的,就是要通过特征可视化,告诉我们如何通过可视化的角度,查看你的精度确实提高了,你设计CNN学习到的特征确实比较牛逼。这篇文献是经典必读文献,才发表了一年多,引用次数就已经达到了好几百,学习这篇文献,对于我们今后深入理解CNN,具有非常重要的意义。总之这篇文章,牛逼哄哄。

二、利用反卷积实现特征可视化

为了解释卷积神经网络为什么work,我们就需要解释CNN的每一层学习到了什么东西。为了理解网络中间的每一层,提取到特征,paper通过反卷积的方法,进行可视化。反卷积网络可以看成是卷积网络的逆过程。反卷积网络在文献《Adaptive deconvolutional networks for mid and high level feature learning》中被提出,是用于无监督学习的。然而本文的反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积网络模型,没有学习训练的过程。

反卷积可视化以各层得到的特征图作为输入,进行反卷积,得到反卷积结果,用以验证显示各层提取到的特征图。举个例子:假如你想要查看Alexnet 的conv5提取到了什么东西,我们就用conv5的特征图后面接一个反卷积网络,然后通过:反池化、反激活、反卷积,这样的一个过程,把本来一张13*13大小的特征图(conv5大小为13*13),放大回去,最后得到一张与原始输入图片一样大小的图片(227*227)。

1、反池化过程

我们知道,池化是不可逆的过程,然而我们可以通过记录池化过程中,最大激活值得坐标位置。然后在反池化的时候,只把池化过程中最大激活值所在的位置坐标的值激活,其它的值置为0,当然这个过程只是一种近似,因为我们在池化的过程中,除了最大值所在的位置,其它的值也是不为0的。刚好最近几天看到文献:《Stacked What-Where Auto-encoders》,里面有个反卷积示意图画的比较好,所有就截下图,用这篇文献的示意图进行讲解:
这里写图片描述

以上面的图片为例,上面的图片中左边表示pooling过程,右边表示unpooling过程。假设我们pooling块的大小是3*3,采用max pooling后,我们可以得到一个输出神经元其激活值为9,pooling是一个下采样的过程,本来是3*3大小,经过pooling后,就变成了1*1大小的图片了。而upooling刚好与pooling过程相反,它是一个上采样的过程,是pooling的一个反向运算,当我们由一个神经元要扩展到3*3个神经元的时候,我们需要借助于pooling过程中,记录下最大值所在的位置坐标(0,1),然后在unpooling过程的时候,就把(0,1)这个像素点的位置填上去,其它的神经元激活值全部为0。再来一个例子:
这里写图片描述

在max pooling的时候,我们不仅要得到最大值,同时还要记录下最大值得坐标(-1,-1),然后再unpooling的时候,就直接把(-1-1)这个点的值填上去,其它的激活值全部为0。

2、反激活

我们在Alexnet中,relu函数是用于保证每层输出的激活值都是正数,因此对于反向过程,我们同样需要保证每层的特征图为正值,也就是说这个反激活过程和激活过程没有什么差别,都是直接采用relu函数。

3、反卷积

对于反卷积过程,采用卷积过程转置后的滤波器(参数一样,只不过把参数矩阵水平和垂直方向翻转了一下),这一点我现在也不是很明白,估计要采用数学的相关理论进行证明。

最后可视化网络结构如下:这里写图片描述

网络的整个过程,从右边开始:输入图片-》卷积-》Relu-》最大池化-》得到结果特征图-》反池化-》Relu-》反卷积。到了这边,可以说我们的算法已经学习完毕了,其它部分是文献要解释理解CNN部分,可学可不学。

总的来说算法主要有两个关键点:1、反池化 2、反卷积,这两个源码的实现方法,需要好好理解。

三、理解可视化

特征可视化:一旦我们的网络训练完毕了,我们就可以进行可视化,查看学习到了什么东西。但是要怎么看?怎么理解,又是一回事了。我们利用上面的反卷积网络,对每一层的特征图进行查看。

1、特征可视化结果:

这里写图片描述

总的来说,通过CNN学习后,我们学习到的特征,是具有辨别性的特征,比如要我们区分人脸和狗头,那么通过CNN学习后,背景部位的激活度基本很少,我们通过可视化就可以看到我们提取到的特征忽视了背景,而是把关键的信息给提取出来了。从layer 1、layer 2学习到的特征基本上是颜色、边缘等低层特征;layer 3则开始稍微变得复杂,学习到的是纹理特征,比如上面的一些网格纹理;layer 4学习到的则是比较有区别性的特征,比如狗头;layer 5学习到的则是完整的,具有辨别性关键特征。

2、特征学习的过程。作者给我们显示了,在网络训练过程中,每一层学习到的特征是怎么变化的,上面每一整张图片是网络的某一层特征图,然后每一行有8个小图片,分别表示网络epochs次数为:1、2、5、10、20、30、40、64的特征图:

这里写图片描述

结果:(1)仔细看每一层,在迭代的过程中的变化,出现了sudden jumps;(2)从层与层之间做比较,我们可以看到,低层在训练的过程中基本没啥变化,比较容易收敛,高层的特征学习则变化很大。这解释了低层网络的从训练开始,基本上没有太大的变化,因为梯度弥散嘛。(3)从高层网络conv5的变化过程,我们可以看到,刚开始几次的迭代,基本变化不是很大,但是到了40~50的迭代的时候,变化很大,因此我们以后在训练网络的时候,不要着急看结果,看结果需要保证网络收敛。

3、图像变换。从文献中的图片5可视化结果,我们可以看到对于一张经过缩放、平移等操作的图片来说:对网络的第一层影响比较大,到了后面几层,基本上这些变换提取到的特征没什么比较大的变化。

个人总结:我个人感觉学习这篇文献的算法,不在于可视化,而在于学习反卷积网络,如果懂得了反卷积网络,那么在以后的文献中,你会经常遇到这个算法。大部分CNN结构中,如果网络的输出是一整张图片的话,那么就需要使用到反卷积网络,比如图片语义分割、图片去模糊、可视化、图片无监督学习、图片深度估计,像这种网络的输出是一整张图片的任务,很多都有相关的文献,而且都是利用了反卷积网络,取得了牛逼哄哄的结果。所以我觉得我学习这篇文献,更大的意义在于学习反卷积网络。

参考文献:

1、《Visualizing and Understanding Convolutional Networks》

2、《Adaptive deconvolutional networks for mid and high level feature learning》

3、《Stacked What-Where Auto-encoders》

************作者:hjimce 时间:2016.1.10 联系QQ:1393852684 原创文章,转载请保留原文地址、作者等信息****

这篇关于可视化理解卷积神经网络-ECCV 2014的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1068082

相关文章

可视化实训复习篇章

前言: 今天,我们来学习seaborn库可视化,当然,这个建立在Matplotlib的基础上,话不多说,进入今天的正题吧!当然,这个是《python数据分析与应用》书中,大家有需求的可以参考这本书。 知识点: Matplotlib中有两套接口分别是pyplot和pyylab,即绘图时候主要导入的是Matplotlib库下的两个子模块(两个py文件)matplotlib.pyplot和matp

YOLOv8改进 | SPPF | 具有多尺度带孔卷积层的ASPP【CVPR2018】

💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 专栏目录 :《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有40+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进——点击即可跳转 Atrous Spatial Pyramid Pooling (ASPP) 是一种在深度学习框架中用于语义分割的网络结构,它旨

Windows/macOS/Linux 安装 Redis 和 Redis Desktop Manager 可视化工具

本文所有安装都在macOS High Sierra 10.13.4进行,Windows安装相对容易些,Linux安装与macOS类似,文中会做区分讲解 1. Redis安装 1.下载Redis https://redis.io/download 把下载的源码更名为redis-4.0.9-source,我喜欢跟maven、Tomcat放在一起,就放到/Users/zhan/Documents

回调的简单理解

之前一直不太明白回调的用法,现在简单的理解下 就按这张slidingmenu来说,主界面为Activity界面,而旁边的菜单为fragment界面。1.现在通过主界面的slidingmenu按钮来点开旁边的菜单功能并且选中”区县“选项(到这里就可以理解为A类调用B类里面的c方法)。2.通过触发“区县”的选项使得主界面跳转到“区县”相关的新闻列表界面中(到这里就可以理解为B类调用A类中的d方法

人工智能机器学习算法总结神经网络算法(前向及反向传播)

1.定义,意义和优缺点 定义: 神经网络算法是一种模仿人类大脑神经元之间连接方式的机器学习算法。通过多层神经元的组合和激活函数的非线性转换,神经网络能够学习数据的特征和模式,实现对复杂数据的建模和预测。(我们可以借助人类的神经元模型来更好的帮助我们理解该算法的本质,不过这里需要说明的是,虽然名字是神经网络,并且结构等等也是借鉴了神经网络,但其原型以及算法本质上还和生物层面的神经网络运行原理存在

python实现最简单循环神经网络(RNNs)

Recurrent Neural Networks(RNNs) 的模型: 上图中红色部分是输入向量。文本、单词、数据都是输入,在网络里都以向量的形式进行表示。 绿色部分是隐藏向量。是加工处理过程。 蓝色部分是输出向量。 python代码表示如下: rnn = RNN()y = rnn.step(x) # x为输入向量,y为输出向量 RNNs神经网络由神经元组成, python

【第十三课】区域经济可视化表达——符号表达与标注

一、前言 地图最直接的表达就是使用符号表达。使用符号可以把简单的点线面要 素渲染成最直观的地理符号,提高地图的可读性。只要掌握了 ArcGIS 符号制 作的技巧,分析符号并总结出规则,就可以制作符合要求的地图+符号。 (一)符号的选择与修改 符号的选择在制图中至关重要,使用符号选择器对话框可从多个可用样式 中选择符号,并且每个符号都有一个标签用来描述其图形特征,如颜色或类型, 利用这些标签可

如何理解redis是单线程的

写在文章开头 在面试时我们经常会问到这样一道题 你刚刚说redis是单线程的,那你能不能告诉我它是如何基于单个线程完成指令接收与连接接入的? 这时候我们经常会得到沉默,所以对于这道题,笔者会直接通过3.0.0源码分析的角度来剖析一下redis单线程的设计与实现。 Hi,我是 sharkChili ,是个不断在硬核技术上作死的 java coder ,是 CSDN的博客专家 ,也是开源

MySQL理解-下载-安装

MySQL理解: mysql:是一种关系型数据库管理系统。 下载: 进入官网MySQLhttps://www.mysql.com/  找到download 滑动到最下方:有一个开源社区版的链接地址: 然后就下载完成了 安装: 双击: 一直next 一直next这一步: 一直next到这里: 等待加载完成: 一直下一步到这里

PyTorch模型_trace实战:深入理解与应用

pytorch使用trace模型 1、使用trace生成torchscript模型2、使用trace的模型预测 1、使用trace生成torchscript模型 def save_trace(model, input, save_path):traced_script_model = torch.jit.trace(model, input)<