【自动驾驶】8. MDC通信架构 + DDS + SOME/IP

2024-06-16 21:18

本文主要是介绍【自动驾驶】8. MDC通信架构 + DDS + SOME/IP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述

对于AP框架,感知融合模块中,由于PreFusion通信数据量大,所以采用带宽较大的DDS(Data Distribution Service)通信协议,其余节点传入数据量较小,采用SOME/IP(Scalable Service-Oriented Middleware over IP)通信协议。融合模块与规控模块之间通信为DDS通信协议。规划控制模块内各节点之间均采用能够处理大数据量的DDS通信协议。

DDS主要用于内部通信高性能场景,SOME/IP主要用于与外部部件对接的通信场景,如与Classic AUTOSAR对接。
AP的通信协议分为DDS和SOME/IP。DDS的通讯协议又分为SHM(SHare Memory)和UDP(User Datagram Protocol),SHM为域内通讯协议,UDP为芯片间通讯协议。


节点间的交互情况如下
  • CameraPerception节点从Camera中以SHM通信协议获取图像信息,对图像进行初步处理后,将障碍物列表信息输出给PreFusion节点。
  • RadarPerception节点采用SOME/IP通信协议,通过MCU(Microcontroller Unit)从Radar中获取毫米波雷达信息,并从Gps_localization获取车辆自身状态参数(包括自车位置、车速、航向信息等),对获取到的信息进行初步处理后,将障碍物列表信息输出给FullFusion节点。
  • LidarPerception节点采用SHM通信协议从Lidar中获取激光雷达信息,采用SOME/IP通信协议从Gps_localization获取车辆自身状态参数(包括自车位置、车速、航向信息等),对获取到的信息进行初步处理后,将障碍物列表信息输出给FullFusion节点。
  • PreFusion节点采用SHM通信协议从Lidar中获取激光雷达的信息,采用SHM+UDP通信协议从CameraPerception节点获取障碍物列表信息,以及采用SOME/IP通信协议从Gps_localization节点中获取车辆自身状态参数(包括自车位置、车速、航向信息等),再对获取到的信息进行初步融合,输出新的障碍物列表信息给FullFusion节点。
  • FullFusion节点分别从RadarPerception、LidarPerception和PreFusion节点获取障碍物列表信息,并从Gps_localization获取车辆自身状态参数(包括自车位置、车速、航向信息等),对获取到的信息进行最终的融合,得到可用的障碍物列表信息,然后将该信息输出给BehaviorPlan和MotionPlan节点。
  • MCU采用SOME/IP的通信协议将GPS/IMU、车辆底盘线控系统等信息输出给Vsomeipd节点。MCU接收GPS/IMU传感器信息的方式为串口通讯,接收线控系统信息的方式为CAN总线通讯
  • Gps_localization节点接收GPS/IMU信息,获得车辆自身状态参数(包括自车位置、车速、航向信息等),然后将这些信息输出给MissionPlan、BehaviorPlan、MotionPlan、Transform等节点
  • MissionPlan节点接收GPS/IMU信息,获得自车定位,并按照HMI界面设定的终点、途经点,根据高精度地图信息,规划出一条从起始点到终点的全局路径。然后将该路径以及高精度地图中其他信息发送出去,供其他节点使用。
  • BehaviorPlan节点为行为决策节点。该节点接收周围环境信息(包括GPS/IMU信息、高精度地图信息、周围障碍物信息、车辆自身信息等),经过决策,输出无人车应当执行的行为,并给出行为相关的边界信息,提供给MotionPlan节点进行轨迹规划。
  • MotionPlan节点接收GPS/IMU信息,包括行为决策信息、周围障碍物信息、车辆自身状态信息等,然后根据这些信息规划出一条最优的路径(包含位置坐标和速度信息的曲线),再将最优路径输出给Transform节点。
  • Transform为坐标转换节点。该节点的功能为将MotionPlan节点提供的信息从UTM坐标转换到车辆坐标系,输出给Control节点。
  • Control节点接收Transform节点转换之后的最优路径信息,然后结合车辆自身状态计算车辆横向及纵向的控制量(方向盘转角、油门开度、制动强度等),输出至车辆线控层,由执行器执行相应控制量.
  • Vehicle Abstract节点为车辆抽象节点。下行负责将Control节点发送的控制信号进行转换,并发送至MCU;上行又称为Vehicle Report节点,负责将MCU采集到的车辆状态信息进行转换,并发送至Conctrol、Transform、MotionPlan和BehaviorPlan节点。
  • Vsomeipd是信息传输路由节点,为采用SOME/IP通信协议的节点提供数据转换,如:Vehicle Abstract、GPS Abstract节点采用SOME/IP通讯协议将数据传输给其他节点(GPS_localization也需要通过Vsomeipd节点进行数据转换,在图中为了更好的体现出数据通路没有画出),数据经过一定的方式处理后输出给MCU。
  • Vehicle Abstract节点为车辆抽象层,GPS Abstract节点为GPS抽象层,这两个节点主要负责将Vsomeipd节点输出的相应数据进行解析,输出给其余各节点进行决策规划及控制量的计算。

请提前规划好Service Interface Id和Service Instance Id,防止发生ID冲突。ID取值范围为101~150。

  • Service Interface:服务接口,定义接口数据类型和通讯协议等,通过不同的Service Interface Id来区别服务接口,该参数需要保证全局唯一。
  • Service Instance :服务实例,由Service Interface实例化而来,通过不同的Service Instance Id来区别通讯的服务实例,该参数需要保证全局唯一。

ARXML是AUTOSAR Adaptive Platform用于生成节点之间相互通信的数据类型(以头文件体现)以及通信规则(以json格式体现)。ARXML主要通过MDC Manifest Configurator工具进行配置。配置前需要规划接收接口、发送接口、通信的数据类型以及通信方式等。

CM(Communication Management)
如果应用实现不需要调用CM(Communication Management)相关的接口代码,则只需要配置Application Manifest、Machine Manifest和System Manifest即可。

在这里插入图片描述


通信方式

CM包含三种通讯方式:Event、Method与Field。

  • Event通讯方式是在服务发现后,从服务端发送数据,由客户端进行接收,单向传输数据。
  • Method通讯方式是先由客户端发送请求,服务端收到请求后会处理客户请求并返回应答。
  • Field通讯方式分为Setter、Getter与Notifier方法。其中Notifier与Event工作模式类似,Getter与Setter与Method方法类似。
    在这里插入图片描述

在这里插入图片描述


在这里插入图片描述


SOME/IP协议通讯注意事项

若应用需要使用SOME/IP方式进行通讯,请注意以下几点:

  • 1.必须先启动someipd,再开启服务端与客户端应用进行通讯,且someipd程序必须先于所有应用程序启动。
    someipd是SOMEIP的后台进程,负责服务发现、数据转发等功能。
    someipd程序的启动需要通过环境变量指定“vsomeip.json”配置文件,可通过如下方式指定:export SOMEIP_CONFIG_FILE=/<文件目录>/vsomeip.json
    然后,运行someipd可执行文件。someipd可执行文件目录为/<deb解压位置>/usr/local/AdaptiveAutoSar/bin
  • 2.关于“vsomeip.json”配置文件的生成,用户可以选择将主机上所有Application的ARXML配置文件全部输入代码生成工具生成,也可以选择手动配置(将各APP单独生成的“vsomeip.json”文件组合,主要组合“vsomeip.json”中services、applications、clients中的内容)。
  • 3.someipd对应配置文件中必须包含该主机对外通讯需要的所有服务信息。
  • 4.一台主机上只允许启动一个someipd。
  • 5.应用于someipd的“vsomeip.json”配置文件必须配置service-Discovery信息。具体配置需要参考配置项。

QoS(Quality of Service)服务质量
在这里插入图片描述

这篇关于【自动驾驶】8. MDC通信架构 + DDS + SOME/IP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1067570

相关文章

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

SpringBoot项目启动后自动加载系统配置的多种实现方式

《SpringBoot项目启动后自动加载系统配置的多种实现方式》:本文主要介绍SpringBoot项目启动后自动加载系统配置的多种实现方式,并通过代码示例讲解的非常详细,对大家的学习或工作有一定的... 目录1. 使用 CommandLineRunner实现方式:2. 使用 ApplicationRunne

shell脚本快速检查192.168.1网段ip是否在用的方法

《shell脚本快速检查192.168.1网段ip是否在用的方法》该Shell脚本通过并发ping命令检查192.168.1网段中哪些IP地址正在使用,脚本定义了网络段、超时时间和并行扫描数量,并使用... 目录脚本:检查 192.168.1 网段 IP 是否在用脚本说明使用方法示例输出优化建议总结检查 1

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单

《Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单》:本文主要介绍Springboot的ThreadPoolTaskScheduler线... 目录ThreadPoolTaskScheduler线程池实现15分钟不操作自动取消订单概要1,创建订单后

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

SpringBoot实现基于URL和IP的访问频率限制

《SpringBoot实现基于URL和IP的访问频率限制》在现代Web应用中,接口被恶意刷新或暴力请求是一种常见的攻击手段,为了保护系统资源,需要对接口的访问频率进行限制,下面我们就来看看如何使用... 目录1. 引言2. 项目依赖3. 配置 Redis4. 创建拦截器5. 注册拦截器6. 创建控制器8.

Spring使用@Retryable实现自动重试机制

《Spring使用@Retryable实现自动重试机制》在微服务架构中,服务之间的调用可能会因为一些暂时性的错误而失败,例如网络波动、数据库连接超时或第三方服务不可用等,在本文中,我们将介绍如何在Sp... 目录引言1. 什么是 @Retryable?2. 如何在 Spring 中使用 @Retryable

Linux限制ip访问的解决方案

《Linux限制ip访问的解决方案》为了修复安全扫描中发现的漏洞,我们需要对某些服务设置访问限制,具体来说,就是要确保只有指定的内部IP地址能够访问这些服务,所以本文给大家介绍了Linux限制ip访问... 目录背景:解决方案:使用Firewalld防火墙规则验证方法深度了解防火墙逻辑应用场景与扩展背景:

使用 Python 和 LabelMe 实现图片验证码的自动标注功能

《使用Python和LabelMe实现图片验证码的自动标注功能》文章介绍了如何使用Python和LabelMe自动标注图片验证码,主要步骤包括图像预处理、OCR识别和生成标注文件,通过结合Pa... 目录使用 python 和 LabelMe 实现图片验证码的自动标注环境准备必备工具安装依赖实现自动标注核心