算法工程师 | 如何快速 了解,掌握一个算法!脚踏实地,迎着星辰,向前出发 ~

本文主要是介绍算法工程师 | 如何快速 了解,掌握一个算法!脚踏实地,迎着星辰,向前出发 ~,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文是一些碎碎念

希望对正在迈向 算法工程师道路的你

有所裨益
  • 一般来说,代码 中会有很多 算法实现的细节,但论文可能并没有体现,所以能够尝试自己 仔细阅读论文,手动复现代码,基本上来说对 这个 算法 你有了全面的理解,和把握。

  • 通过算法设计的一些特性,你会知道这个算法适用于什么样子的场景,这个算法所擅长和不擅长的事情。

  • 就像如何训练微调优化一个大模型,这些工程上的细节,其实,对算法的精度影响蛮大的。

下面的图是GPT出来的建议,这个路线和顺序,非常实用和高效。

拿PixOOD算法举例来说, 快速掌握 PixOOD 算法的建议

  1. 理解核心思想: 掌握 PixOOD 算法的基本原理和关键技术。
  2. 阅读论文: 仔细阅读 PixOOD 论文,了解算法的细节和实验结果。
  3. 复现代码: 尝试复现 PixOOD 论文中的代码,加深对算法的理解。
  4. 实践应用: 将 PixOOD 模型应用于实际任务,并分析模型性能。
  5. 阅读相关论文: 了解 OOD 检测领域的最新研究成果,并与 PixOOD 算法进行比较。
    PixOOD 算法是一个强大的 OOD 检测工具,可以帮助解决各种现实世界问题

欢迎评论,有问题,有回应

请添加图片描述

欢迎订阅专栏,第一时间掌握最新科技
大模型系列篇章 专栏链接
深度学习基础知识 专栏链接

🐧大模型系列篇章
💖 Fine-tuning 🔎 zero-shot模型的微调,同时保持原始模型的鲁棒性 🔎 wise-ft
💖 多模态大模型 🔎 GroundingDINO 论文总结
💖 端到端目标检测 🔎 从DETR 到 GroundingDINO 🔥
💖 多模态大模型 👉 CLIP论文总结
💖 多模态大模型 👉 EVA-CLIP
💚 生成模型 👉 从 VAE 到 Diffusion Model (上)
💚 生成模型 👉 从 VAE 到 Diffusion Model (下)🔥
💧 天气大模型

🐧深度学习基础知识篇

💖 深度学习基础知识干货 🔎 Batch Normalization 批量归一化
💖 深度学习基础知识干货 🔎 卷积模型的Memory, Params, Flop是如何计算的?
💖 深度学习基础知识干货 🔎 Cross-Entropy Loss 多分类损失函数
💖 深度学习基础知识干货 🔎 Videos 动作检测
💖 深度学习基础知识干货 🔎 目标检测(Object Detection): 你需要知道的一些概念
💖 深度学习基础知识干货 🔎 微调(fine-tuning)和泛化(generalization)
💖 深度学习基础知识干货 🔎 Group Convolution / Depthwise Convolution 轻量模型的必有的卷积
💖 深度学习基础知识干货 🔎 Gradient checkpointing
💖 深度学习基础知识干货 🔎 Softmax中温度(temperature)参数
💖 深度学习基础知识干货 🔎 什么是few-shot learning

这篇关于算法工程师 | 如何快速 了解,掌握一个算法!脚踏实地,迎着星辰,向前出发 ~的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1067356

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int