锁存器的工作原理及其在FPGA设计中的注意事项

2024-06-16 18:44

本文主要是介绍锁存器的工作原理及其在FPGA设计中的注意事项,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

锁存器(Latch)是数字电子中常用的一种基本元件,用于在特定的时间点或条件下“锁存”或保存输入的数据值。锁存器对脉冲电平敏感,它只在输入脉冲的高电平(或低电平)期间对输入信号敏感并改变状态。在数字电路中可以记录二进制数字信号“ 0”和 1”。

锁存器的主要作用:

  • 缓存数据。
  • 解决高速控制器与慢速外设之间的不同步问题。
  • 解决驱动问题。
  • 解决一个I/O口既能输出也能输入的问题。

锁存器的工作原理

  • 锁存器的工作是基于电平控制数据的输入,包括不带使能控制的锁存器和带使能控制的锁存器。
  • 在没有锁存信号时,锁存器的输出随输入信号变化,就像信号通过一个缓冲器一样。
  • 一旦锁存信号起作用,数据被锁住,输入信号不再影响输出。这意味着在有锁存信号时,输入的状态被保存到输出,直到下一个锁存信号。

锁存器不同于触发器,锁存器在不锁存数据时,输出端的信号随输入信号变化,就像信号通过一个缓存器一样;一旦锁存信号起锁存作用,则数据被锁住,输入信号不起作用。因此锁存器也称为透明锁存器,指的是不锁存时输出对输入是透明的。

锁存器的类型:

  • 常见的锁存器类型包括RS锁存器(Reset-Set Latch)、D锁存器(Data Latch)等。
  • RS锁存器:当S(Set)输入为高电平且R(Reset)输入为低电平时,输出Q被置位为高电平;当S为低电平且R为高电平时,输出Q被复位为低电平。
  • D锁存器:有一个数据输入端(D)和一个使能端(E)。当使能信号有效时,D锁存器捕获D端的信号并保存在输出Q上;当使能信号无效时,输出Q保持不变,直到下一个使能脉冲到来。

1 RS锁存器

从RS锁存器的电路结构图我们可以看出,该电路主要是由两个部分组成,第一个部分是由两个与门组成的RS锁存器,第二个部分是由两个或非门组成的控制电路。R为复位信号,S为置位信号,C为控制信号,用来控制前两个与门的激励输入。

下面我们来分析下RS锁存器的工作原理,当控制信号C=0时,根据与门的逻辑定律,无论R和S输入什么信号, RD和 SD信号同时为 0。 根据由或门组成的 RS锁存器的逻辑定律, RD和 SD都同时
等于 0的话,锁存器的输出端 Q将维持原状态不变,即处于保持状态。

当控制端 C=0时:电路处于保持状态,RS锁存器不起作用。

当控制端 C=1时:

  • 若R=0,S=0,即无激励信号时,有以下两种情况:

锁存器输出结果为:Qn+1 = Qn

其中 Qn是指触发器当前逻辑状态(即触发前的状态), Qn+1是指触发后的状态。

  • 若R=1,S=0,即置位信号为0

锁存器输出结果为:Qn+1 = 0

  • 若R=0,S=1,即置位信号为1

锁存器输出结果为:Qn+1 = 1

  • 若R=1,S=1,即置位、复位信号同时为1

当激励信号由11变为00时,锁存器的输出既可以稳定在1状态,也可以稳定在0状态。 这时的状态是不稳定的,所以我们要禁止使用11这一组激励信号。

根据上面的描述,可以推断出RS锁存器的特性表,其中 Qn是指触发器当前逻辑状态(即触发前的状态), Qn+1是指触发后的状态。

从上表可以看出,只有在置位或复位信号为1时,RS锁存器才起作用的,都为0时不起作用

RS锁存器的工作波形图如下:

2 D锁存器

从D锁存器的电路结构图我们可以看出,该电路主要是由两个部分组成,第一个部分是由两个与非门组成的RS锁存器,第二个部分是由两个与非门组成的控制电路。C为控制信号,用来控制前两个与非门的激励输入。
下面我们来分析下D锁存器的工作原理,当控制信号C=0时,根据与非门的逻辑定律,无论D输入什么信号, RD和 SD信号同时为 1。 根据由与非门组成的 RS锁存器的逻辑定律, RD和 SD都同时
等于 1的话,锁存器的输出端 Q将维持原状态不变,即处于保持状态。

当控制端 C=1时,如果此时 D= 0, SD就等于1, RD就等于 0,根据 RS锁存器的逻辑规律,电路的结果就为 0状态;如果 D = 1,那么 RD就等于 1,SD也就等于 0,锁存器的结果就为 1状态,也就是说,此时锁存器的状态是由激励输入端 D来确定的,并且 D等于什么,锁存器的状态就是什么,电路不再保持原来的状态,将处于一个新状态D。这就是将单路数据 D存入到锁存器之中。

根据上面的描述,可以推断出D锁存器的特性表,其中 Qn是指触发器当前逻辑状态(即触发前的状态), Qn+1是指触发后的状态。

通过这个表格,我们可以看出,当C为 1时, D的状态和 Qn+1的状态完全一样,当 D=0时, Qn+1=0,当 D=1时, Qn+1=1。
还可以进一步画出D锁存器的工作波形图。

从D锁存器的工作波形图图中我们可以看出, D是锁存器的输入信号, C是锁存器的控制信号,
Q是锁存器的输出信号。

当控制信号 C为高电平时:

  • 输出信号 Q将跟随输入信号 D的变化而变化。
  • 虚线内, Q的波形等于 D的波形。

当控制信号 C从高电平变为低电平时,输入信号 D的状态将会决定锁存器将要锁存的状态。

C由高变低时:

  • 若所对应的输入信号 D为低电平,那么输出信号 Q也将会锁存低电平。
  • 若所对应的输入信号 D为高电平,那么输出信号 Q也将会锁存高电平。

3 锁存器的缺点

在绝大多数FPGA设计中,要避免产生锁存器。它会让您设计的时序出问题,并且它的隐蔽性很强,新人很难查出问题。锁存器最大的危害在于不能过滤毛刺和影响工具进行时序分析。这对于下一级电路是极其危险的。所以,只要能用触发器的地方,就不用锁存器。

锁存器的示意图如上,它没有时钟信号,只有数据输入和使能以及输出q端,没有时钟信号也就说明我们没有办法对这种器件进行时序分析,这个在时序电路里面是非常危险的行为,因为可能引起时序不满足导致电路功能实现有问题。

4 FPGA设计中使用锁存器的注意事项

一般出现下面两种情况时,组合逻辑代码在综合过程中会出现锁存器:

  • if语句中缺少else分支;
  • case语句中缺少default分支。

解决办法:

就是if必须带else分支,case必须带default分支。

注意:
只有不带时钟的always语句中if或者case语句不完整才会产生latch,带时钟的语句if或者case语句不完整描述不会产生latch。

5 在FPGA中使用锁存器

5.1 不带else的always语句(没有clk)

module latch(
input clk, // system clock 6 
input a, 
input b, 
output reg y 
); always @ (*) begin if (a == 1) y = b ; end
endmodule

使用vivado中RTL ANALYSIS的Schematic来看综合后的电路结构,

从上图可以看出,这个寄存器没有clk输入信号,图上标识出latch的名字,可以看出这个电路就是latch。

5.2 else的always语句(没有clk)

下面我们把else补充完整再来看下电路结构, 代码如下:

module latch(
input clk, // system clock 6 
input a, 
input b, 
output reg y 
); always @ (*) begin if (a == 1) y = b ; elsey = 0;end
endmodule

使用vivado中RTL ANALYSIS的Schematic来看综合后的电路结构,

上图所示的电路结构是一个mux选择电路,可以看出,加了else分支的电路就不会有latch电路。

5.3 不带default的case语句

module latch(
input clk, // system clock 6 
input a, 
input b, 
output reg y 
); always @ (*) begin case ( a ) 0 : y = b ; endcaseend
endmodule

使用vivado中RTL ANALYSIS的Schematic来看综合后的电路结构,

从上图可以看出,这个寄存器没有clk输入信号,图上标识出latch的名字,可以看出综合出的这个电路就是latch。

5.4 带default的case语句

module latch(
input clk, // system clock 6 
input a, 
input b, 
output reg y 
); always @ (*) begin case ( a ) 0 : y = b ; default : y = 0 ;endcaseend
endmodule

使用vivado中RTL ANALYSIS的Schematic来看综合后的电路结构,

综合后产生的是一个mux选择电路,因此,加了case的default分支的电路就不会有latch电路。

这篇关于锁存器的工作原理及其在FPGA设计中的注意事项的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1067243

相关文章

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Idea调用WebService的关键步骤和注意事项

《Idea调用WebService的关键步骤和注意事项》:本文主要介绍如何在Idea中调用WebService,包括理解WebService的基本概念、获取WSDL文件、阅读和理解WSDL文件、选... 目录前言一、理解WebService的基本概念二、获取WSDL文件三、阅读和理解WSDL文件四、选择对接

Python中的可视化设计与UI界面实现

《Python中的可视化设计与UI界面实现》本文介绍了如何使用Python创建用户界面(UI),包括使用Tkinter、PyQt、Kivy等库进行基本窗口、动态图表和动画效果的实现,通过示例代码,展示... 目录从像素到界面:python带你玩转UI设计示例:使用Tkinter创建一个简单的窗口绘图魔法:用

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

python安装完成后可以进行的后续步骤和注意事项小结

《python安装完成后可以进行的后续步骤和注意事项小结》本文详细介绍了安装Python3后的后续步骤,包括验证安装、配置环境、安装包、创建和运行脚本,以及使用虚拟环境,还强调了注意事项,如系统更新、... 目录验证安装配置环境(可选)安装python包创建和运行Python脚本虚拟环境(可选)注意事项安装

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实