「动态规划」如何求乘积最大子数组?

2024-06-16 16:20

本文主要是介绍「动态规划」如何求乘积最大子数组?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

152. 乘积最大子数组icon-default.png?t=N7T8https://leetcode.cn/problems/maximum-product-subarray/description/

给你一个整数数组nums,请你找出数组中乘积最大的非空连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。测试用例的答案是一个32位整数。

  1. 输入:nums = [2,3,-2,4],输出:6,解释:子数组[2,3]有最大乘积6。
  2. 输入:nums = [-2,0,-1],输出:0,解释:结果不能为2,因为[-2,-1]不是子数组。

提示:1 <= nums.length <= 2 * 10^4,-10 <= nums[i] <= 10,nums的任何前缀或后缀的乘积都保证是一个32位整数。


我们用动态规划的思想来解决这个问题。

确定状态表示:根据经验和题目要求,我们可以选择用dp[i]表示,以i位置为结尾的所有子数组中,最大的乘积。比如,dp[3]就表示:下标范围在[0, 3],[1, 3],[2, 3],[3, 3]这4个子数组中,最大的乘积。但是这样的状态表示是推不出状态转移方程的,因为被乘数和乘数的正负也会影响到乘积的大小,比如2个很小的负数相乘的结果会很大(-1000 x -1000 = 1000000)。所以,我们还需要定义一个保存最小乘积的状态表示,也就是说:

  • 用f[i]表示,以i位置为结尾的所有子数组中,最大的乘积。
  • 用g[i]表示,以i位置为结尾的所有子数组中,最小的乘积。

推导状态转移方程:考虑f[i],即以i位置为结尾的所有子数组中最大的乘积,分类讨论以下情况:

  • 如果子数组的长度为1,也就是说子数组的下标范围是[i, i],那么最大的乘积就是nums[i]本身。
  • 如果子数组的长度大于1,最大的乘积就和nums[i]的正负相关。
    • 如果nums[i]是正数,那么子数组中除了nums[i]的其他元素的乘积越大,子数组的乘积就越大(因为y = kx,k > 0时是增函数,x越大,y越大)。也就是说,此时最大的乘积就是以i - 1位置为结尾的所有子数组中的最大的乘积乘以nums[i],即f[i - 1] * nums[i]。
    • 如果nums[i]是负数,那么子数组中除了nums[i]的其他元素的乘积越小,子数组的乘积就越大(因为y = kx,k < 0时是减函数,x越小,y越大)。也就是说,此时最大的乘积就是以i - 1位置为结尾的所有子数组中的最小的乘积乘以nums[i],即g[i - 1] * nums[i]。

事实上,乘积的最大值一定是nums[i],f[i - 1] * nums[i],g[i - 1] * nums[i]这三者之一,所以f[i] = max(nums[i], f[i - 1] * nums[i], g[i - 1] * nums[i])。乘积的最小值同理,即g[i] = min(nums[i], f[i - 1] * nums[i], g[i - 1] * nums[i])

初始化:根据状态转移方程,计算f[0]和g[0]时会越界,所以要对其初始化。根据状态表示,f[0]和g[0]分别表示以0为结尾的所有子数组中,乘积的最大值和最小值,显然以0为结尾的子数组只有下标范围是[0, 0]的数组本身,所以f[0] = g[0] = nums[0]

填表顺序:根据状态转移方程,f[i]和g[i]都依赖于f[i - 1]和g[i - 1],所以应从左往右,同时填f表和g表

返回值:由于并不确定子数组结尾的下标,根据状态表示,应返回f表的最大值

细节问题:f表和g表的规模和nums相同,都是1 x n

时间复杂度:O(N),空间复杂度:O(N)。

但是以下代码会有一个测试用例通不过……

class Solution {
public:int maxProduct(vector<int>& nums) {int n = nums.size();// 创建dp表vector<int> f(n);auto g = f;// 初始化f[0] = g[0] = nums[0];// 填表for (int i = 1; i < n; i++) {int x = nums[i];int y = f[i - 1] * x;int z = g[i - 1] * x;f[i] = max(x, max(y, z));g[i] = min(x, min(y, z));}// 返回结果return *max_element(f.begin(), f.end());}
};

通不过的测试用例:[0,10,10,10,10,10,10,10,10,10,-10,10,10,10,10,10,10,10,10,10,0],报错:Line 17: Char 30: runtime error: signed integer overflow: 1000000000 * -10 cannot be represented in type 'int' (solution.cpp) SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior solution.cpp:17:30

溢出了?好好好,这么玩是吧。仔细想想,题目描述中说了:nums的任何前缀或后缀的乘积都保证是一个32位整数,好像没毛病?因为第一个数和最后一个数是0,那么nums的任何前缀或后缀的乘积都是0。好一个文字游戏!

我试着把int改成long long,如下:

class Solution {
public:int maxProduct(vector<int>& nums) {int n = nums.size();// 创建dp表vector<long long> f(n);auto g = f;// 初始化f[0] = g[0] = static_cast<long long>(nums[0]);// 填表for (int i = 1; i < n; i++) {long long x = static_cast<long long>(nums[i]);long long y = f[i - 1] * x;long long z = g[i - 1] * x;f[i] = max(x, max(y, z));g[i] = min(x, min(y, z));}// 返回结果return static_cast<int>(*max_element(f.begin(), f.end()));}
};

结果同样的测试用例:[0,10,10,10,10,10,10,10,10,10,-10,10,10,10,10,10,10,10,10,10,0],报错:Line 18: Char 36: runtime error: signed integer overflow: -1000000000000000000 * 10 cannot be represented in type 'long long' (solution.cpp) SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior solution.cpp:18:36

!!?long long还能溢出,活久见!最后改用double,就过了。这个测试用例有毒吧。

class Solution {
public:int maxProduct(vector<int>& nums) {int n = nums.size();// 创建dp表vector<double> f(n);auto g = f;// 初始化f[0] = g[0] = static_cast<double>(nums[0]);// 填表for (int i = 1; i < n; i++) {double x = static_cast<double>(nums[i]);double y = f[i - 1] * x;double z = g[i - 1] * x;f[i] = max(x, max(y, z));g[i] = min(x, min(y, z));}// 返回结果return static_cast<int>(*max_element(f.begin(), f.end()));}
};

这篇关于「动态规划」如何求乘积最大子数组?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1066934

相关文章

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

hdu 1166 敌兵布阵(树状数组 or 线段树)

题意是求一个线段的和,在线段上可以进行加减的修改。 树状数组的模板题。 代码: #include <stdio.h>#include <string.h>const int maxn = 50000 + 1;int c[maxn];int n;int lowbit(int x){return x & -x;}void add(int x, int num){while

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同

poj 3723 kruscal,反边取最大生成树。

题意: 需要征募女兵N人,男兵M人。 每征募一个人需要花费10000美元,但是如果已经招募的人中有一些关系亲密的人,那么可以少花一些钱。 给出若干的男女之间的1~9999之间的亲密关系度,征募某个人的费用是10000 - (已经征募的人中和自己的亲密度的最大值)。 要求通过适当的招募顺序使得征募所有人的费用最小。 解析: 先设想无向图,在征募某个人a时,如果使用了a和b之间的关系

poj 2976 分数规划二分贪心(部分对总体的贡献度) poj 3111

poj 2976: 题意: 在n场考试中,每场考试共有b题,答对的题目有a题。 允许去掉k场考试,求能达到的最高正确率是多少。 解析: 假设已知准确率为x,则每场考试对于准确率的贡献值为: a - b * x,将贡献值大的排序排在前面舍弃掉后k个。 然后二分x就行了。 代码: #include <iostream>#include <cstdio>#incl

poj 3258 二分最小值最大

题意: 有一些石头排成一条线,第一个和最后一个不能去掉。 其余的共可以去掉m块,要使去掉后石头间距的最小值最大。 解析: 二分石头,最小值最大。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <c

poj 2175 最小费用最大流TLE

题意: 一条街上有n个大楼,坐标为xi,yi,bi个人在里面工作。 然后防空洞的坐标为pj,qj,可以容纳cj个人。 从大楼i中的人到防空洞j去避难所需的时间为 abs(xi - pi) + (yi - qi) + 1。 现在设计了一个避难计划,指定从大楼i到防空洞j避难的人数 eij。 判断如果按照原计划进行,所有人避难所用的时间总和是不是最小的。 若是,输出“OPETIMAL",若

poj 2135 有流量限制的最小费用最大流

题意: 农场里有n块地,其中约翰的家在1号地,二n号地有个很大的仓库。 农场有M条道路(双向),道路i连接着ai号地和bi号地,长度为ci。 约翰希望按照从家里出发,经过若干块地后到达仓库,然后再返回家中的顺序带朋友参观。 如果要求往返不能经过同一条路两次,求参观路线总长度的最小值。 解析: 如果只考虑去或者回的情况,问题只不过是无向图中两点之间的最短路问题。 但是现在要去要回