HDU-1074 Doing Homework 状态压缩DP

2024-06-16 16:18
文章标签 dp 压缩 状态 hdu homework 1074

本文主要是介绍HDU-1074 Doing Homework 状态压缩DP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接


题目大意: 有n个作业,每个作业有各自的完成期限与完成所需时间。每个作业每超过完成期限一个单位时间扣1学分,问怎么安排完成作业顺序使得所扣学分最少。


由于n小于等于15 状态少 明显可以用二进制压缩状态枚举排列 要注意的 答案相同要按作业名字典序排。


#include <stdio.h>
#include <string.h>
#include <iostream>
#include<functional>
#include <queue>
#include <string>
#include <map>
#include <algorithm>
using namespace std;
const int maxn = 16;
const int inf = 1<<30;
typedef __int64 LL;
int n;
struct node
{string name;int dl,cost;
}sub[maxn];
struct Node
{int Time,score,pre;
}dp[1<<maxn];
void GetDp()
{int tmp,pre;dp[0].score = 0; dp[0].Time = 0; dp[0].pre = -1;for( int s = 1; s < (1<<n); s ++ ){dp[s].score = inf;for( int i = 0; i < n; i ++ ){if( s&(1<<i) ){pre = s-(1<<i);tmp = dp[pre].Time + sub[i].cost - sub[i].dl;if( tmp < 0 )	tmp = 0;if( dp[pre].score + tmp <  dp[s].score ){dp[s].score = dp[pre].score + tmp;dp[s].Time = dp[pre].Time + sub[i].cost;dp[s].pre = i;}else if( dp[pre].score + tmp ==  dp[s].score && sub[i].name > sub[dp[s].pre].name ){dp[s].pre = i;}}}}
}
void Outup( int s )
{if( s == 0 )	return;int preS = s - (1<<dp[s].pre);Outup( preS );cout<<sub[dp[s].pre].name<<endl;
}
int main()
{#ifndef ONLINE_JUDGE  freopen("data.txt","r",stdin);  #endif  int cas;scanf("%d",&cas);while( cas -- ){scanf("%d",&n);for( int i = 0; i < n; i ++ )cin>>sub[i].name>>sub[i].dl>>sub[i].cost;GetDp();printf("%d\n",dp[(1<<n)-1].score);Outup( (1<<n)-1 );}return 0;
}


#include <stdio.h>
#include <string.h>
#include <iostream>
#include<functional>
#include <queue>
#include <string>
#include <map>
#include <algorithm>
using namespace std;
const int maxn = 16;
const int inf = 1<<30;
typedef __int64 LL;
int n;
struct node
{string name;int dl,cost;
}sub[maxn];
struct Node
{int Time,score,pre;
}dp[1<<maxn];
void GetDp()
{int tmp,pre;dp[0].score = 0; dp[0].Time = 0; dp[0].pre = -1;for( int s = 1; s < (1<<n); s ++ ){dp[s].score = inf;for( int i = 0; i < n; i ++ ){if( s&(1<<i) ){pre = s-(1<<i);tmp = dp[pre].Time + sub[i].cost - sub[i].dl;if( tmp < 0 )	tmp = 0;if( dp[pre].score + tmp <  dp[s].score ){//扣分相同,取字典序小的那一个,由于这里j是按从小到达搜索的,默认已是按字典序,不需再处理dp[s].score = dp[pre].score + tmp;dp[s].Time = dp[pre].Time + sub[i].cost;dp[s].pre = i;}}}}
}
void Outup( int s )
{if( s == 0 )	return;int preS = s - (1<<dp[s].pre);Outup( preS );cout<<sub[dp[s].pre].name<<endl;
}
int main()
{#ifndef ONLINE_JUDGE  freopen("data.txt","r",stdin);  #endif  int cas;scanf("%d",&cas);while( cas -- ){scanf("%d",&n);for( int i = n-1; i >= 0; i -- )cin>>sub[i].name>>sub[i].dl>>sub[i].cost;GetDp();printf("%d\n",dp[(1<<n)-1].score);Outup( (1<<n)-1 );}return 0;
}


这篇关于HDU-1074 Doing Homework 状态压缩DP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1066924

相关文章

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

Python利用PIL进行图片压缩

《Python利用PIL进行图片压缩》有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所以本文为大家介绍了Python中图片压缩的方法,需要的可以参考下... 有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所有可以对文件中的图

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

通过prometheus监控Tomcat运行状态的操作流程

《通过prometheus监控Tomcat运行状态的操作流程》文章介绍了如何安装和配置Tomcat,并使用Prometheus和TomcatExporter来监控Tomcat的运行状态,文章详细讲解了... 目录Tomcat安装配置以及prometheus监控Tomcat一. 安装并配置tomcat1、安装

Linux之进程状态&&进程优先级详解

《Linux之进程状态&&进程优先级详解》文章介绍了操作系统中进程的状态,包括运行状态、阻塞状态和挂起状态,并详细解释了Linux下进程的具体状态及其管理,此外,文章还讨论了进程的优先级、查看和修改进... 目录一、操作系统的进程状态1.1运行状态1.2阻塞状态1.3挂起二、linux下具体的状态三、进程的

Qt实现文件的压缩和解压缩操作

《Qt实现文件的压缩和解压缩操作》这篇文章主要为大家详细介绍了如何使用Qt库中的QZipReader和QZipWriter实现文件的压缩和解压缩功能,文中的示例代码简洁易懂,需要的可以参考一下... 目录一、实现方式二、具体步骤1、在.pro文件中添加模块gui-private2、通过QObject方式创建

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

hdu1565(状态压缩)

本人第一道ac的状态压缩dp,这题的数据非常水,很容易过 题意:在n*n的矩阵中选数字使得不存在任意两个数字相邻,求最大值 解题思路: 一、因为在1<<20中有很多状态是无效的,所以第一步是选择有效状态,存到cnt[]数组中 二、dp[i][j]表示到第i行的状态cnt[j]所能得到的最大值,状态转移方程dp[i][j] = max(dp[i][j],dp[i-1][k]) ,其中k满足c

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm