38、基于卷积神经网络(CNN)的车牌自动识别系统(matlab)

2024-06-16 14:36

本文主要是介绍38、基于卷积神经网络(CNN)的车牌自动识别系统(matlab),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、原理及流程

1)原理

CNN(卷积神经网络)是一种深度学习模型,可以用于图像识别和分类任务。车牌自动识别系统的原理基本上就是使用CNN模型对车牌图像进行处理和识别。

首先:系统需要收集大量的含有车牌的图像数据作为训练集。这些图像通常包括不同光照条件、角度、大小和背景等因素的变化。

然后:将这些图像输入到CNN模型中进行训练,使得模型能够学习到车牌的特征。在训练过程中,CNN会通过多层卷积和池化操作,逐步提取图像中的特征,如边缘、纹理和颜色等。

最后:通过全连接层和softmax分类器将这些特征映射到具体的车牌字符上,并输出识别结果。

当系统接收到新的车牌图像时,会通过预处理步骤对图像进行处理(如灰度化、裁剪和归一化),然后将其输入CNN模型中进行预测。

最终:系统将输出识别的车牌字符信息,完成自动识别过程。

总的来说,基于CNN的车牌自动识别系统利用深度学习技术来自动提取图像特征和进行分类,可以实现高效准确的车牌识别功能。

2)流程

基于CNN的车牌自动识别系统的流程通常包括以下几个步骤:

  1. 数据收集和预处理:收集大量包含车牌的图像数据作为训练集和测试集。对图像进行预处理,如灰度化、裁剪和归一化,以便输入到CNN模型进行训练和识别。

  2. 搭建CNN模型:构建深度学习模型,通常包括卷积层、池化层、全连接层和softmax分类器。通过对训练集进行多次训练,调整模型参数,使得模型能够学习到车牌的特征并实现准确的识别。

  3. 模型训练:将预处理后的图像数据输入CNN模型中进行训练。在训练过程中,模型通过反向传播算法不断调整权重和偏置,以最小化损失函数,提高模型的准确度。

  4. 车牌图像输入和预测:当系统接收到新的车牌图像时,进行预处理操作,然后将其输入训练好的CNN模型中进行预测。模型会输出车牌图像中的字符信息,实现自动识别功能。

  5. 输出结果:最终将识别的车牌字符信息输出到用户界面或其他系统中,完成自动识别过程。

总的来说,基于CNN的车牌自动识别系统流程包括数据收集和预处理、模型搭建、模型训练、车牌图像输入和预测、以及结果输出等关键步骤。通过这些步骤,系统可以实现对车牌图像的自动识别和字符提取。

2、实验准备

1)实验训练数据集

数据集1

数据集2

数据集3

2)测试数据集 

 3、搭建卷积神经网络(CNN)模型及训练

1)搭建及流程

在MATLAB中搭建和训练卷积神经网络(CNN)模型通常使用深度学习工具箱(Deep Learning Toolbox)。以下是在MATLAB中搭建CNN模型并进行训练的一般步骤:

  1. 数据准备:准备训练集和测试集的图像数据。确保数据集中包含车牌图像,同时标注相应的车牌字符信息。

  2. 定义CNN模型架构:在MATLAB中使用深度学习工具箱函数(如convolution2dLayermaxPooling2dLayerfullyConnectedLayer等)定义CNN模型的架构。这些函数可以用来添加卷积层、池化层、全连接层等结构,并通过layerGraph函数将它们连接起来。

  3. 配置训练选项:设置训练选项,包括选择优化器(如SGD、Adam等)、学习率、迭代次数等超参数。

  4. 训练模型:使用trainNetwork函数来训练CNN模型。将准备好的训练集数据和训练选项作为输入参数传递给该函数,开始训练模型。

  5. 评估模型性能:在训练过程中,可以使用测试集数据对模型进行评估,了解模型的准确率、损失值等性能指标。

  6. 模型应用:训练完成后,可以将模型应用于新的车牌图像数据上进行预测,并输出识别结果。

需要注意的是,在整个过程中,MATLAB的深度学习工具箱提供了丰富的函数和工具来简化CNN模型的搭建和训练过程。同时,官方文档也提供了详细的指导和示例代码,可以帮助用户更快地构建自己的CNN模型并进行训练。

在MATLAB中搭建和训练卷积神经网络(CNN)模型通常使用深度学习工具箱(Deep Learning Toolbox)。以下是在MATLAB中搭建CNN模型并进行训练的一般步骤:

  1. 数据准备:准备训练集和测试集的图像数据。确保数据集中包含车牌图像,同时标注相应的车牌字符信息。

  2. 定义CNN模型架构:在MATLAB中使用深度学习工具箱函数(如convolution2dLayermaxPooling2dLayerfullyConnectedLayer等)定义CNN模型的架构。这些函数可以用来添加卷积层、池化层、全连接层等结构,并通过layerGraph函数将它们连接起来。

  3. 配置训练选项:设置训练选项,包括选择优化器(如SGD、Adam等)、学习率、迭代次数等超参数。

  4. 训练模型:使用trainNetwork函数来训练CNN模型。将准备好的训练集数据和训练选项作为输入参数传递给该函数,开始训练模型。

  5. 评估模型性能:在训练过程中,可以使用测试集数据对模型进行评估,了解模型的准确率、损失值等性能指标。

  6. 模型应用:训练完成后,可以将模型应用于新的车牌图像数据上进行预测,并输出识别结果。

需要注意的是,在整个过程中,MATLAB的深度学习工具箱提供了丰富的函数和工具来简化CNN模型的搭建和训练过程。同时,官方文档也提供了详细的指导和示例代码,可以帮助用户更快地构建自己的CNN模型并进行训练。

2)代码

clc;
clear all;
close all;
% 读取图片用来创建训练集
dirInfo1 = [dir('model1/*.bmp'); dir('model2/*.bmp');  dir('model3/*.bmp');];
train_data  = [];
train_label = {};
num = 0;
for j = 1:30for i = 1:length(dirInfo1)img1 = imread(fullfile(dirInfo1(i).folder, dirInfo1(i).name));img1 = imresize(img1, [224, 224], 'bilinear');img1 = double(img1); img1 = img1 - min(img1(:)); if max(img1(:)) > 0; img1 = img1/max(img1(:)); endif i <= 31img1 = imdilate(img1, ones(3,3));elseif i <= (31 + 36)img1 = imerode(img1, ones(3,3));elseimg1 = img1;end%imshow(img1); pause()if rand < 0.1img1 = imrotate(img1, rand()*20 - 10);img1 = imresize(img1, [224, 224], 'nearest');elseimg1 = imresize(img1, [224, 224], 'nearest');endimg1 = double(img1)*255;num = num + 1;train_data(:,:,:,num) = cat(3, zeros(size(img1)), img1, zeros(size(img1)));train_label{1,num} = regexprep(dirInfo1(i).name, '\.bmp', '');train_label{1,num} = regexprep(train_label{1,num}, '_.+', '');end%
end
class_num = length(unique(train_label));
load resnet50.mat
net = resnet50;
%Extract the layer graph from the trained network and plot the layer graph.
lgraph = layerGraph(net);
net.Layers(1)
inputSize = net.Layers(1).InputSize;% Replacing last three layers for transfer learning / retraininglgraph = removeLayers(lgraph, {'ClassificationLayer_fc1000','fc1000_softmax','fc1000'});numClasses = class_num;
newLayers = [fullyConnectedLayer(numClasses,'Name','fc','WeightLearnRateFactor',10,'BiasLearnRateFactor',10)softmaxLayer('Name','softmax')classificationLayer('Name','classoutput')];
lgraph = addLayers(lgraph,newLayers);% Connect last transfer layer to new layers and check
lgraph = connectLayers(lgraph,'avg_pool','fc');% figure('Units','normalized','Position',[0.3 0.3 0.4 0.4]);
% %plot(lgraph)
% ylim([0,10])% Set layers to 0 for speed and prevent over fittinglayers = lgraph.Layers;
connections = lgraph.Connections;layers(1:110) = freezeWeights(layers(1:110));
lgraph = createLgraphUsingConnections(layers,connections);options = trainingOptions('sgdm', ...'MiniBatchSize',20, ...'MaxEpochs',25, ... % was 100'InitialLearnRate',1e-4, ...'ValidationFrequency',5, ...'ValidationPatience',Inf, ...'Verbose',false, ...'Plots','training-progress', ...'ExecutionEnvironment', 'gpu');[trainedNet, traininfo] = trainNetwork(train_data, categorical(train_label), lgraph, options);%save Result;
save net trainedNet;

4、GUI界面实现基于卷积神经网络(CNN)的车牌自动识别系统

1)前界面设计

未工作状态

工作状态 

2)数据导入 

3)识别过程

开始识别

识别过程

车牌定位——>车牌灰度化——>车牌二值化——>车牌结果

 

4)识别结果

结果1 

结果2  

5)识别结果记录 

按钮操作

 表格记录显示

 5、总结 

基于卷积神经网络(CNN)的车牌自动识别系统在MATLAB中的实现一般包括以下步骤和关键技术:

  1. 数据集准备:收集包含车牌图像以及相应字符信息的训练集和测试集数据。确保数据集大小适中,且具有一定的多样性和代表性。

  2. 数据预处理:对车牌图像进行预处理操作,包括图像的灰度化、裁剪、大小归一化等操作,以保证输入到CNN模型中的数据符合模型要求。

  3. CNN模型搭建:在MATLAB中使用深度学习工具箱构建CNN模型。定义卷积层、池化层、全连接层等结构,并通过layerGraph函数将它们连接起来,构建完整的神经网络模型。

  4. 模型训练:利用准备好的训练集数据和CNN模型,使用trainNetwork函数在MATLAB中进行模型训练。通过多次迭代优化模型参数,使得模型能够学习到车牌图像的特征并准确识别字符。

  5. 模型评估:在训练过程中,使用测试集数据对模型进行评估,了解模型的准确率、损失值等性能指标。根据评估结果对模型进行调优和改进。

  6. 车牌图像输入和预测:当系统接收到新的车牌图像时,进行预处理操作,并将其输入训练好的CNN模型进行预测。模型会输出识别的字符信息,从而实现车牌自动识别的功能。

总的来说,在MATLAB中构建基于CNN的车牌自动识别系统,可以借助深度学习工具箱提供的函数和工具来简化模型搭建和训练过程。同时,注意数据集的质量、模型架构的设计和调优、以及模型的评估和改进,都是实现高效、准确的车牌自动识别系统的关键。

数据集资源链接

源代码资源链接

这篇关于38、基于卷积神经网络(CNN)的车牌自动识别系统(matlab)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1066707

相关文章

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

2.1/5.1和7.1声道系统有什么区别? 音频声道的专业知识科普

《2.1/5.1和7.1声道系统有什么区别?音频声道的专业知识科普》当设置环绕声系统时,会遇到2.1、5.1、7.1、7.1.2、9.1等数字,当一遍又一遍地看到它们时,可能想知道它们是什... 想要把智能电视自带的音响升级成专业级的家庭影院系统吗?那么你将面临一个重要的选择——使用 2.1、5.1 还是

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

windows系统下shutdown重启关机命令超详细教程

《windows系统下shutdown重启关机命令超详细教程》shutdown命令是一个强大的工具,允许你通过命令行快速完成关机、重启或注销操作,本文将为你详细解析shutdown命令的使用方法,并提... 目录一、shutdown 命令简介二、shutdown 命令的基本用法三、远程关机与重启四、实际应用

Debian如何查看系统版本? 7种轻松查看Debian版本信息的实用方法

《Debian如何查看系统版本?7种轻松查看Debian版本信息的实用方法》Debian是一个广泛使用的Linux发行版,用户有时需要查看其版本信息以进行系统管理、故障排除或兼容性检查,在Debia... 作为最受欢迎的 linux 发行版之一,Debian 的版本信息在日常使用和系统维护中起着至关重要的作

什么是cron? Linux系统下Cron定时任务使用指南

《什么是cron?Linux系统下Cron定时任务使用指南》在日常的Linux系统管理和维护中,定时执行任务是非常常见的需求,你可能需要每天执行备份任务、清理系统日志或运行特定的脚本,而不想每天... 在管理 linux 服务器的过程中,总有一些任务需要我们定期或重复执行。就比如备份任务,通常会选在服务器资

TP-LINK/水星和hasivo交换机怎么选? 三款网管交换机系统功能对比

《TP-LINK/水星和hasivo交换机怎么选?三款网管交换机系统功能对比》今天选了三款都是”8+1″的2.5G网管交换机,分别是TP-LINK水星和hasivo交换机,该怎么选呢?这些交换机功... TP-LINK、水星和hasivo这三台交换机都是”8+1″的2.5G网管交换机,我手里的China编程has

基于Qt实现系统主题感知功能

《基于Qt实现系统主题感知功能》在现代桌面应用程序开发中,系统主题感知是一项重要的功能,它使得应用程序能够根据用户的系统主题设置(如深色模式或浅色模式)自动调整其外观,Qt作为一个跨平台的C++图形用... 目录【正文开始】一、使用效果二、系统主题感知助手类(SystemThemeHelper)三、实现细节