【Pandas驯化-03】Pandas中常用统计函数mean、count、std、info使用

2024-06-16 13:28

本文主要是介绍【Pandas驯化-03】Pandas中常用统计函数mean、count、std、info使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【Pandas驯化-03】Pandas中常用统计函数mean、count、std、info使用
 
本次修炼方法请往下查看
在这里插入图片描述

🌈 欢迎莅临我的个人主页 👈这里是我工作、学习、实践 IT领域、真诚分享 踩坑集合,智慧小天地!
🎇 相关内容文档获取 微信公众号
🎇 相关内容视频讲解 B站

🎓 博主简介:AI算法驯化师,混迹多个大厂搜索、推荐、广告、数据分析、数据挖掘岗位 个人申请专利40+,熟练掌握机器、深度学习等各类应用算法原理和项目实战经验

🔧 技术专长: 在机器学习、搜索、广告、推荐、CV、NLP、多模态、数据分析等算法相关领域有丰富的项目实战经验。已累计为求职、科研、学习等需求提供近千次有偿|无偿定制化服务,助力多位小伙伴在学习、求职、工作上少走弯路、提高效率,近一年好评率100%

📝 博客风采: 积极分享关于机器学习、深度学习、数据分析、NLP、PyTorch、Python、Linux、工作、项目总结相关的实用内容。

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

🌵文章目录🌵

  • 🎯 一、基本介绍
  • 💡 二、使用方法
    • 常用函数
    • 创建DataFrame
  • 🔍 三、进阶用法
  • 🔍 四、注意事项
  • 🔧 五、总结

下滑查看解决方法

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

🎯 一、基本介绍

  Pandas中的统计函数是数据分析中不可或缺的工具,它们可以帮助我们快速计算数据集中的描述性统计数据,如均值、中位数、标准差等,可以快速的对数据进行分布分析、异常值分析、数据类型等基本数据统计分析。

💡 二、使用方法

常用函数

  Pandas 提供了很多统计函数,以下是一些常用的:

  • mean(): 计算均值
  • median(): 计算中位数
  • std(): 计算标准差
  • var(): 计算方差
  • sum(): 计算总和
  • min(): 找到最小值
  • max(): 找到最大值
  • count(): 数值的个数
  • info(): 总体数据分布

创建DataFrame

import pandas as pd
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'],'Age': [24, 27, 22, 32, 29],'Income': [50000, 54000, 35000, 62000, 58000]
}
df = pd.DataFrame(data)
# 计算年龄的均值
mean_age = df['Age'].mean()
print("Mean Age:", mean_age)# 计算收入的中位数
median_income = df['Income'].median()
print("Median Income:", median_income)# 计算年龄的标准差
std_age = df['Age'].std()
print("Standard Deviation of Age:", std_age)# 计算年龄的方差
var_age = df['Age'].var()
print("Variance of Age:", var_age)# 计算所有人的总收入
total_income = df['Income'].sum()
print("Total Income:", total_income)# 找到年龄的最大值和最小值
max_age = df['Age'].max()
min_age = df['Age'].min()
print("Max Age:", max_age, "Min Age:", min_age)

  

🔍 三、进阶用法

   当我们想要对整体的数据进行分布的查看时,需要查看各个列是否有缺失值,以及每个列的数据格式是什么样子时,这个时候需要可以通过info函数来获取相关的结果,具体的代码如下所示:

    print(df.info())<class 'pandas.core.frame.DataFrame'>RangeIndex: 5 entries, 0 to 4Data columns (total 3 columns):#   Column  Non-Null Count  Dtype ---  ------  --------------  ----- 0   Name    5 non-null      object1   Age     5 non-null      int64 2   Income  5 non-null      int64 dtypes: int64(2), object(1)memory usage: 248.0+ bytesNone

  从上面的输出结果可以看出来,每个列是否有缺失值,以及每个列中的数据格式是什么样子的。
  

🔍 四、注意事项

  对上述的各个统计函数在使用的过程中需要注意的一些事项,不然可能会出现error,具体主要为:

  • 确保在使用统计函数之前,数据是干净且适合进行统计分析的。
  • 某些统计函数,如 mean() 和 median(),可能会受到异常值的影响。在这种情况下,可能需要先进行数据清洗或转换。
  • 当使用 std() 和 var() 时,要注意它们计算的是样本标准差和方差还是总体标准差和方差。默认情况下,Pandas 计算的是总体标准差和方差(不使用 Bessel’s correction)。

🔧 五、总结

  Pandas 的统计函数是数据分析中的强大工具,它们可以帮助我们快速获取数据的关键信息。通过上述示例,我们可以看到如何使用这些函数来分析数据集。然而,为了得到准确的分析结果,我们需要确保数据的质量,并注意函数的使用条件。希望这篇博客能帮助你更好地利用 Pandas 进行数据分析。

这篇关于【Pandas驯化-03】Pandas中常用统计函数mean、count、std、info使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1066581

相关文章

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读