JUC并发编程第十三章——读写锁、邮戳锁

2024-06-16 13:20

本文主要是介绍JUC并发编程第十三章——读写锁、邮戳锁,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本章路线总纲

无锁——>独占锁——>读写锁——>邮戳锁

1 关于锁的面试题

  • 你知道Java里面有那些锁
  • 你说说你用过的锁,锁饥饿问题是什么?
  • 有没有比读写锁更快的锁
  • StampedLock知道吗?(邮戳锁/票据锁)
  • ReentrantReadWriteLock有锁降级机制,你知道吗?

2 简单聊聊ReentrantReadWriteLock

类图:

读写锁的演变情况:

2.1 是什么?

读写锁说明

  • 一个资源能够被多个读线程访问,或者被一个写线程访问,但是不能同时存在读写线程

演变

  • 无锁无序->加锁->读写锁->邮戳锁

读写锁意义和特点

  • 读写锁只允许读读共存,而读写和写写依然是互斥的,恰好大多实际场景是”读/读“线程间不存在互斥关系,只有”读/写“线程或者”写/写“线程间的操作是需要互斥的,因此引入了 ReentrantReadWriteLock
  • 一个ReentrantReadWriteLock同时只能存在一个写锁但是可以存在多个读锁,但是不能同时存在写锁和读锁,也即资源可以被多个读操作访问,或一个写操作访问,但两者不能同时进行。
  • 只有在读多写少情景之下,读写锁才具有较高的性能体现。

2.2 特点

可重入、读写兼顾

结论:一体两面,读写互斥,读读共享,读没有完成的时候其他线程写锁无法获得

ReentrantReadWriteLock的缺点:

1. 锁饥饿问题:

  • ReentrantReadWriteLock实现了读写分离,但是一旦读操作比较多的时候,想要获取写锁就变得比较困难了,因此当前有可能会一直存在读锁,而无法获得写锁。

2. 锁降级:

  • 将写锁降级为读锁------>遵循获取写锁、获取读锁再释放写锁的次序,写锁能够降级为读锁
  • 如果一个线程持有了写锁,在没有释放写锁的情况下,它还可以继续获得读锁。这就是写锁的降级,降级成为了读锁。
  • 如果释放了写锁,那么就完全转换为读锁
  • 如果有线程在读,那么写线程是无法获取写锁的,是悲观锁的策略

2.3 读写锁案例

  • 使用读写锁之前,使用synchronized的情况
public class ReentrantReadWriteLockDemo {public static void main(String[] args) {MyCache cache = new MyCache();//开启10个线程,写入数据for (int i = 1; i <= 10; i++) {int finalI = i;new Thread(() -> {cache.write(finalI + "", finalI + "");}, String.valueOf(i)).start();}//开启10个线程,读取数据for (int i = 1; i <= 10; i++) {int finalI = i;new Thread(() -> {cache.read(finalI + "");}, String.valueOf(i)).start();}}
}//模拟一个缓存资源类,有读写两种功能
class MyCache {HashMap<String, String> map = new HashMap<>();ReentrantLock lock = new ReentrantLock();//读写都加锁public void write(String key, String value) {lock.lock();try {System.out.println(Thread.currentThread().getName() + "线程开始写入数据...");//延迟500ms模拟业务耗时,同时可以看出读写不能共同执行 (因为运行结果是先打印一个线程写入,再打印对应线程写入完成)TimeUnit.MILLISECONDS.sleep(500);map.put(key, value);System.out.println(Thread.currentThread().getName() + "线程完成写入数据!");} catch (InterruptedException e) {e.printStackTrace();}finally {lock.unlock();}}public void read(String key) {lock.lock();try {System.out.println(Thread.currentThread().getName() + "线程开始读取数据...");String val = map.get(key);TimeUnit.MILLISECONDS.sleep(200);System.out.println(Thread.currentThread().getName() + "线程读取到的数据是:\t" + val);} catch (InterruptedException e) {e.printStackTrace();}finally {lock.unlock();}}
}
运行结果:
1线程开始写入数据...
1线程完成写入数据!
2线程开始写入数据...
2线程完成写入数据!
3线程开始写入数据...
3线程完成写入数据!
4线程开始写入数据...
4线程完成写入数据!
5线程开始写入数据...
5线程完成写入数据!
6线程开始写入数据...
6线程完成写入数据!
7线程开始写入数据...
7线程完成写入数据!
9线程开始写入数据...
9线程完成写入数据!
8线程开始写入数据...
8线程完成写入数据!
10线程开始写入数据...
10线程完成写入数据!
1线程开始读取数据...
1线程读取到的数据是:	1
2线程开始读取数据...
2线程读取到的数据是:	2
3线程开始读取数据...
3线程读取到的数据是:	3
4线程开始读取数据...
4线程读取到的数据是:	4
5线程开始读取数据...
5线程读取到的数据是:	5
6线程开始读取数据...
6线程读取到的数据是:	6
7线程开始读取数据...
7线程读取到的数据是:	7
8线程开始读取数据...
8线程读取到的数据是:	8
9线程开始读取数据...
9线程读取到的数据是:	9
10线程开始读取数据...
10线程读取到的数据是:	10

说明:可以看出,开始写入/读取和完成写入/读取,都是成对出现的。这说明这写入/读取期间,其他线程不能执行写入/读取。读写/读读/写写都互斥了。

问题:我们希望的情况应该是,读写/写写都互斥,但读读可以并发读取。从而引出了读写锁(对写独占,对读共享)

  • 使用读写锁
public class ReentrantReadWriteLockDemo {public static void main(String[] args) {MyCache cache = new MyCache();//开启10个线程,写入数据for (int i = 1; i <= 10; i++) {int finalI = i;new Thread(() -> {cache.write(finalI + "", finalI + "");}, String.valueOf(i)).start();}//开启10个线程,读取数据for (int i = 1; i <= 10; i++) {int finalI = i;new Thread(() -> {cache.read(finalI + "");}, String.valueOf(i)).start();}}
}//模拟一个缓存资源类,有读写两种功能
class MyCache {HashMap<String, String> map = new HashMap<>();ReentrantLock lock = new ReentrantLock();ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock();//读写都加锁public void write(String key, String value) {rwLock.writeLock().lock();try {System.out.println(Thread.currentThread().getName() + "线程开始写入数据...");//延迟500ms模拟业务耗时,同时可以看出读写不能共同执行 (因为运行结果是先打印一个线程写入,再打印对应线程写入完成)TimeUnit.MILLISECONDS.sleep(500);map.put(key, value);System.out.println(Thread.currentThread().getName() + "线程完成写入数据!");} catch (InterruptedException e) {e.printStackTrace();} finally {rwLock.writeLock().unlock();}}public void read(String key) {rwLock.readLock().lock();try {System.out.println(Thread.currentThread().getName() + "线程开始读取数据...");String val = map.get(key);TimeUnit.MILLISECONDS.sleep(200);System.out.println(Thread.currentThread().getName() + "线程读取到的数据是:\t" + val);} catch (InterruptedException e) {e.printStackTrace();} finally {rwLock.readLock().unlock();}}
}
运行结果:
1线程开始写入数据...
1线程完成写入数据!
2线程开始写入数据...
2线程完成写入数据!
3线程开始写入数据...
3线程完成写入数据!
4线程开始写入数据...
4线程完成写入数据!
5线程开始写入数据...
5线程完成写入数据!
6线程开始写入数据...
6线程完成写入数据!
7线程开始写入数据...
7线程完成写入数据!
8线程开始写入数据...
8线程完成写入数据!
9线程开始写入数据...
9线程完成写入数据!
10线程开始写入数据...
10线程完成写入数据!
1线程开始读取数据...
9线程开始读取数据...
7线程开始读取数据...
6线程开始读取数据...
5线程开始读取数据...
3线程开始读取数据...
4线程开始读取数据...
2线程开始读取数据...
10线程开始读取数据...
8线程开始读取数据...
10线程读取到的数据是:10
4线程读取到的数据是:	4
2线程读取到的数据是:	2
8线程读取到的数据是:	8
3线程读取到的数据是:	3
7线程读取到的数据是:	7
6线程读取到的数据是:	6
5线程读取到的数据是:	5
1线程读取到的数据是:	1
9线程读取到的数据是:	9

说明:可以看出,所有写操作还是跟之前一样,全部互斥。但读操作可以并发读取。

结论

使用ReadWriteLock实现读写操作,一体两面,读写互斥,读读共享,但是读没有完成时候其它线程写锁无法获取


这篇关于JUC并发编程第十三章——读写锁、邮戳锁的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1066563

相关文章

C#多线程编程中导致死锁的常见陷阱和避免方法

《C#多线程编程中导致死锁的常见陷阱和避免方法》在C#多线程编程中,死锁(Deadlock)是一种常见的、令人头疼的错误,死锁通常发生在多个线程试图获取多个资源的锁时,导致相互等待对方释放资源,最终形... 目录引言1. 什么是死锁?死锁的典型条件:2. 导致死锁的常见原因2.1 锁的顺序问题错误示例:不同

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]

10. 文件的读写

10.1 文本文件 操作文件三大类: ofstream:写操作ifstream:读操作fstream:读写操作 打开方式解释ios::in为了读文件而打开文件ios::out为了写文件而打开文件,如果当前文件存在则清空当前文件在写入ios::app追加方式写文件ios::trunc如果文件存在先删除,在创建ios::ate打开文件之后令读写位置移至文件尾端ios::binary二进制方式

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

高并发环境中保持幂等性

在高并发环境中保持幂等性是一项重要的挑战。幂等性指的是无论操作执行多少次,其效果都是相同的。确保操作的幂等性可以避免重复执行带来的副作用。以下是一些保持幂等性的常用方法: 唯一标识符: 请求唯一标识:在每次请求中引入唯一标识符(如 UUID 或者生成的唯一 ID),在处理请求时,系统可以检查这个标识符是否已经处理过,如果是,则忽略重复请求。幂等键(Idempotency Key):客户端在每次