【博客719】时序数据库基石:LSM Tree的Compact策略

2024-06-16 13:12

本文主要是介绍【博客719】时序数据库基石:LSM Tree的Compact策略,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

时序数据库基石:LSM Tree的Compact策略

场景:

为什么Compact操作是十分关键的操作,否则SSTable数量会不断膨胀。

在Compact策略之前,先介绍三个比较重要的概念,事实上不同的策略就是围绕这三个概念之间做出权衡和取舍。

  • 读放大:读取数据时实际读取的数据量大于真正的数据量。例如在LSM树中需要先在MemTable查看当前key是否存在,不存在继续从SSTable中寻找。
  • 写放大:写入数据时实际写入的数据量大于真正的数据量。例如在LSM树中写入时可能触发Compact操作,导致实际写入的数据量远大于该key的数据量。
  • 空间放大:数据实际占用的磁盘空间比数据的真正大小更多。上面提到的冗余存储,对于一个key来说,只有最新的那条记录是有效的,而之前的记录都是可以被清理回收的。

LSM结构

在这里插入图片描述

上图中,WAL(Write Ahead LOG)严格来说本身并不是LSM Tree数据结构的一部分,但是实际系统中,WAL是数据库不可或缺的一部分,把WAL包括进来才能更准确的理解LSM Tree。有些场景下性能更重要时,也可以去掉WAL这部分,用一致性来换可用性,如:victoriametrics项目就是。

LSM Tree的数据由两部分组成:内存部分和持久到磁盘中的部分。内存部分由一个MemTable和一个或多个Immutable MemTable组成。磁盘中的部分由分布在多个level的SSTable组成。level级数越小(level 0)表示处于该level的SSTable越新,level级数越大(level 1…level N)表示处于该level的SSTable越老,最大级数(level N)大小由系统设定。在本图中,磁盘中最小的级数为level 0,也有的系统把内存中的Immutable MemTable定义为level 0,而磁盘中的数据从Level 1开始,这只是level定义的不同,并不影响系统的工作流程和对系统的理解。

  • WAL的结构和作用跟其他数据库一样,是一个只能在尾部以Append Only方式追加记录的日志结构文件,它用来当系统崩溃重启时重放操作,使MemTable和Immutable MemTable中未持久化到磁盘中的数据不会丢失。

  • MemTable往往是一个跳表(Skip List)组织的有序数据结构(当然,也可以是有序数组或红黑树等二叉搜索树),跳表既支持高效的动态插入数据,对数据进行排序,也支持高效的对数据进行精确查找和范围查找。

  • SSTable一般由一组数据block和一组元数据block组成。元数据block存储了SSTable数据block的描述信息,如索引、BloomFilter、压缩、统计等信息。因为SSTable是不可更改的,且是有序的,索引往往采用二分法数组结构就可以了。为了节省存储空间和提升数据块block的读写效率,可以对数据block进行压缩。

Compact策略

LSM Tree虽然数据写入速度非常快,但是存在空间放大和读放大的现象,这些现象如果不进行抑制,可能导致读性能的极端恶化和空间占用过于膨胀,最终导致LSM Tree在实际生产环境中不可用。SSTable合并就是用来缓解这种现象的。LSM Tree支持将多个SSTable合并为一个新的SSTable,合并过程中,会删除旧的重叠数据,并真正物理删除被删除的数据,也减少了SSTable的数量,这样消除了空间放大,同时也提升了数据查找的性能。但是,合并需要将合并涉及的SSTable读入内存,并把合并后产生的新的SSTable写入磁盘,会增加磁盘IO和CPU的消耗,这种写入磁盘的数据量大于实际数据量现象成为写放大(write amplification),当然合并也意味着读放大。由此可见,SSTable合并是一把双刃剑,有利也有弊,需要合理利用。

SSTable合并分为minor compaction和major compaction:

  • minor compaction是指将内存中的Immutable MemTable内容flush到磁盘中形成SSTable时进行的数据处理过程
  • major compaction则是指相邻的两级level将数字小level(如level 0)的SSTable合并入数字大level(如level 1)的SSTable中的过程。

SSTable合并其实就是在空间放大、写放大、读放大几个相互制约的因素间寻求平衡,不同的应用场景需要重点优化解决某个问题

从而形成了几种典型的SSTable合并策略:

1、leveled compaction:

leveled compaction为每层level的SSTable数据总大小设置一个阈值,level数越大,阈值设置的也越大,比如level0阈值为10MB、level1阈值设置为100MB、level2阈值设置为1000MB。当某level层的数据总量大小超过设置的阈值时,则选取一个SSTable合并入高一级level层的一个或多个SSTable中。高level层涉及的SSTable的选择处决于数据的分布,以合并后高level层中的所有SSTable数据是整体有序的为准(one sorted run),也就是说数据在同一层中不存在重叠的现象。

在这里插入图片描述

leveled会将每一层切分成多个大小相近的SSTable。这些SSTable是这一层是全局有序的,意味着一个key在每一层至多只有1条记录,不存在冗余记录。之所以可以保证全局有序,是因为合并策略和size-tiered不同

当L1的总大小超过L1本身大小限制:
在这里插入图片描述
此时会从L1中选择至少一个文件,然后把它跟L2有交集的部分(非常关键)进行合并。生成的文件会放在L2:

在这里插入图片描述

此时L1第二SSTable的key的范围覆盖了L2中前三个SSTable,那么就需要将L1中第二个SSTable与L2中前三个SSTable执行Compact操作。

如果L2合并后的结果仍旧超出L5的阈值大小,需要重复之前的操作 —— 选至少一个文件然后把它合并到下一层:
在这里插入图片描述

多个不相干的合并是可以并发进行的:
在这里插入图片描述
leveled策略相较于size-tiered策略来说,每层内key是不会重复的,即使是最坏的情况,除开最底层外,其余层都是重复key,按照相邻层大小比例为10来算,冗余占比也很小。因此空间放大问题得到缓解。但是写放大问题会更加突出。举一个最坏场景,如果LevelN层某个SSTable的key的范围跨度非常大,覆盖了LevelN+1层所有key的范围,那么进行Compact时将涉及LevelN+1层的全部数据。

2、tiered compaction:

在这里插入图片描述
size-tiered策略保证每层SSTable的大小相近,同时限制每一层SSTable的数量。如上图,每层限制SSTable为N,当每层SSTable达到N后,则触发Compact操作合并这些SSTable,并将合并后的结果写入到下一层成为一个更大的sstable。

由此可以看出,当层数达到一定数量时,最底层的单个SSTable的大小会变得非常大。并且size-tiered策略会导致空间放大比较严重。即使对于同一层的SSTable,每个key的记录是可能存在多份的,只有当该层的SSTable执行compact操作才会消除这些key的冗余记录

3、leveled-tiered mixed compaction:

结合leveled compaction和tiered compaction的优势,在部分level之间采用tiered compaction,在另一部分level之间采用leveled compaction。

RocksDB的leveled Compaction采用的是leveled-tiered mixed compaction策略。数据从Immutable MemTable flush到level 0时采用的是tiered compaction,也就是说level0中是存在重叠数据的。level0到levelN之间采用leveld compaction策略。

4、FIFO compaction

FIFO compaction在磁盘中只有一个level层级,SSTable按生成的时间顺序排列,删除过早生成的SSTable。

FIFO compaction适合时间序列数据,一旦生成数据就不会再修改。

Cassandra的TWCS(Time Window Compaction Strategy)、DTCS(Date Tiered Compaction Strategy)和RocksDB的FIFO compaction使用的是FIFO类型的合并策略。

这篇关于【博客719】时序数据库基石:LSM Tree的Compact策略的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1066549

相关文章

redis过期key的删除策略介绍

《redis过期key的删除策略介绍》:本文主要介绍redis过期key的删除策略,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录第一种策略:被动删除第二种策略:定期删除第三种策略:强制删除关于big key的清理UNLINK命令FLUSHALL/FLUSHDB命

数据库面试必备之MySQL中的乐观锁与悲观锁

《数据库面试必备之MySQL中的乐观锁与悲观锁》:本文主要介绍数据库面试必备之MySQL中乐观锁与悲观锁的相关资料,乐观锁适用于读多写少的场景,通过版本号检查避免冲突,而悲观锁适用于写多读少且对数... 目录一、引言二、乐观锁(一)原理(二)应用场景(三)示例代码三、悲观锁(一)原理(二)应用场景(三)示例

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

Node.js 数据库 CRUD 项目示例详解(完美解决方案)

《Node.js数据库CRUD项目示例详解(完美解决方案)》:本文主要介绍Node.js数据库CRUD项目示例详解(完美解决方案),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考... 目录项目结构1. 初始化项目2. 配置数据库连接 (config/db.js)3. 创建模型 (models/

SpringRetry重试机制之@Retryable注解与重试策略详解

《SpringRetry重试机制之@Retryable注解与重试策略详解》本文将详细介绍SpringRetry的重试机制,特别是@Retryable注解的使用及各种重试策略的配置,帮助开发者构建更加健... 目录引言一、SpringRetry基础知识二、启用SpringRetry三、@Retryable注解

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Ubuntu中远程连接Mysql数据库的详细图文教程

《Ubuntu中远程连接Mysql数据库的详细图文教程》Ubuntu是一个以桌面应用为主的Linux发行版操作系统,这篇文章主要为大家详细介绍了Ubuntu中远程连接Mysql数据库的详细图文教程,有... 目录1、版本2、检查有没有mysql2.1 查询是否安装了Mysql包2.2 查看Mysql版本2.

Oracle数据库常见字段类型大全以及超详细解析

《Oracle数据库常见字段类型大全以及超详细解析》在Oracle数据库中查询特定表的字段个数通常需要使用SQL语句来完成,:本文主要介绍Oracle数据库常见字段类型大全以及超详细解析,文中通过... 目录前言一、字符类型(Character)1、CHAR:定长字符数据类型2、VARCHAR2:变长字符数

Win11安装PostgreSQL数据库的两种方式详细步骤

《Win11安装PostgreSQL数据库的两种方式详细步骤》PostgreSQL是备受业界青睐的关系型数据库,尤其是在地理空间和移动领域,:本文主要介绍Win11安装PostgreSQL数据库的... 目录一、exe文件安装 (推荐)下载安装包1. 选择操作系统2. 跳转到EDB(PostgreSQL 的