Explain Python Machine Learning Models with SHAP Library

2024-06-16 12:52

本文主要是介绍Explain Python Machine Learning Models with SHAP Library,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Explain Python Machine Learning Models with SHAP Library – Minimatech

(能翻墙直接看原文)

Explain Python Machine Learning Models with SHAP Library

  • 11 September 2021
  • Muhammad Fawi
  • Machine Learning

Using SHapley Additive exPlainations (SHAP) Library to Explain Python ML Models

Almost always after developing an ML model, we find ourselves in a position where we need to explain this model. Even when the model is very good, it is still a black box that needs to be deciphered. Explaining a model is a very important step in a data science project that we usually overlook. SHAP library helps in explaining python machine learning models, even deep learning ones, so easy with intuitive visualizations. It also demonstrates feature importances and how each feature affects model output.

Here we are going to explore some of SHAP’s power in explaining a Logistic Regression model.

We will use the Bank Marketing dataset[1] to predict whether a customer will subscribe a term deposit.

Data Exploration

We will start by importing all necessary libraries and reading the data. We will use the smaller dataset in the bank-additional zip file.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import shap

import zipfile

from sklearn.impute import SimpleImputer

from sklearn.preprocessing import OneHotEncoder, StandardScaler

from sklearn.pipeline import Pipeline

from sklearn.compose import ColumnTransformer

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.metrics import confusion_matrix, precision_recall_curve

from sklearn.metrics import accuracy_score, precision_score

from sklearn.metrics import recall_score, auc, roc_curve

zf = zipfile.ZipFile("bank-additional.zip")

df = pd.read_csv(zf.open("bank-additional/bank-additional.csv"), sep = ";")

df.shape

# (4119, 21)

Let’s look closely at the data and its structure. We will not go in depth in the exploratory data analysis step. However, we will see how data looks like and perform sum summary and descriptive stats.

df.isnull().sum().sum() # no NAs

# 0

## looking at numeric variables summary stats

df.describe()

Let’s have a quick look at how the object variables are distributed between the two classes; yes and no.

## counts

df.groupby("y").size()

# y

# no 3668

# yes 451

# dtype: int64

num_cols = list(df.select_dtypes(np.number).columns)

print(num_cols)

# ['age', 'duration', 'campaign', 'pdays', 'previous', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed']

obj_cols = list(df.select_dtypes(object).drop("y", axis = 1).columns)

print(obj_cols)

# ['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'day_of_week', 'poutcome']

df[obj_cols + ["y"]].groupby("y").agg(["nunique"])

# job marital education default housing loan contact month day_of_week poutcome

# nunique nunique nunique nunique nunique nunique nunique nunique nunique nunique

# y

# no 12 4 8 3 3 3 2 10 5 3

# yes 12 4 7 2 3 3 2 10 5 3

Seems like categorical variables are equally distributed between the classes.

I know that this is so quick analysis and shallow. But EDA is out of the scope of this blog.

Feature Preprocessing

Now it is time to prepare the features for the LR model. Scaling the numer variables and one hot encode the categorical ones. We will use ColumnTransformer to apply different preprocessors on different columns and wrap everything in a pipeline.

## change classes to float

df["y"] = np.where(df["y"] == "yes", 1., 0.)

## the pipeline

scaler = Pipeline(steps = [

## there are no NAs anyways

("imputer", SimpleImputer(strategy = "median")),

("scaler", StandardScaler())

])

encoder = Pipeline(steps = [

("imputer", SimpleImputer(strategy = "constant", fill_value = "missing")),

("onehot", OneHotEncoder(handle_unknown = "ignore")),

])

preprocessor = ColumnTransformer(

transformers = [

("num", scaler, num_cols),

("cat", encoder, obj_cols)

])

pipe = Pipeline(steps = [("preprocessor", preprocessor)])

Split data into train and test and fit the pipeline on train data and transform both train and test.

X_train, X_test, y_train, y_test = train_test_split(

df.drop("y", axis = 1), df.y,

stratify = df.y,

random_state = 13,

test_size = 0.25)

X_train = pipe.fit_transform(X_train)

X_test = pipe.transform(X_test)

Reverting to the exploratory phase. A good way to visualize one hot encoded data, sparse matrices with 1s and 0s, is by using imshow(). We will look at the last contact month columns which is now is converted into several columns with 1 in the month when the contact happened. The plot will also be split between yes and no.

First let’s get the new feature names from the pipeline.

## getting feature names from the pipeline

nums = pipe["preprocessor"].transformers_[0][2]

obj = list(pipe["preprocessor"].transformers_[1][1]["onehot"].get_feature_names(obj_cols))

fnames = nums + obj

len(fnames) ## new number of columns due to one hot encoder

# 62

Let’s now visualize!

from matplotlib.colors import ListedColormap

print([i for i in obj if "month" in i])

# ['month_apr', 'month_aug', 'month_dec', 'month_jul', 'month_jun', 'month_mar', 'month_may', 'month_nov', 'month_oct', 'month_sep']

## filter the train data on the month data

tr = X_train[:, [True if "month" in i else False for i in fnames]]

fig, (ax1, ax2) = plt.subplots(1, 2, figsize = (15,7))

fig.suptitle("Subscription per Contact Month", fontsize = 20)

cmapmine1 = ListedColormap(["w", "r"], N = 2)

cmapmine2 = ListedColormap(["w", "b"], N = 2)

ax1.imshow(tr[y_train == 0.0], cmap = cmapmine1, interpolation = "none", extent = [3, 6, 9, 12])

ax1.set_title("Not Subscribed")

ax2.imshow(tr[y_train == 1.0], cmap = cmapmine2, interpolation = "none", extent = [3, 6, 9, 12])

ax2.set_title("Subscribed")

plt.show()

Of course, we need to sort the columns with months order and put labels so that the plot can be more readable. But it is just to quickly visualize sparse matrices with 1s and 0s.

Model Development

Now it is time to develop the model and fit it.

clf = LogisticRegression(

solver = "newton-cg", max_iter = 50, C = .1, penalty = "l2"

)

clf.fit(X_train, y_train)

# LogisticRegression(C=0.1, max_iter=50, solver='newton-cg')

Now we will look at model’s AUC and set the threshold to predict the test data.

y_pred_proba = clf.predict_proba(X_test)[:, 1]

fpr, tpr, _ = roc_curve(y_test, y_pred_proba)

roc_auc = auc(fpr, tpr)

plt.plot(fpr, tpr, ls = "--", label = "LR AUC = %0.2f" % roc_auc)

plt.plot([0,1], [0,1], c = "r", label = "No Skill AUC = 0.5")

plt.legend(loc = "lower right")

plt.ylabel("true positive rate")

plt.xlabel("false positive rate")

plt.show()

The model shows a very good AUC. Let’s now set the threshold that gives the best combination between recall and precision.

precision, recall, threshold = precision_recall_curve(

y_test, y_pred_proba)

tst_prt = pd.DataFrame({

"threshold": threshold,

"recall": recall[1:],

"precision": precision[1:]

})

tst_prt_melted = pd.melt(tst_prt, id_vars = ["threshold"],

value_vars = ["recall", "precision"])

sns.lineplot(x = "threshold", y = "value",

hue = "variable", data = tst_prt_melted)

We can spot that 0.3 can be a very good threshold. Let’s test it on test data.

y_pred = np.zeros(len(y_test))

y_pred[y_pred_proba >= 0.3] = 1.

print("Accuracy: %.2f%%" % (100 * accuracy_score(y_test, y_pred)))

print("Precision: %.2f%%" % (100 * precision_score(y_test, y_pred)))

print("Recall: %.2f%%" % (100 * recall_score(y_test, y_pred)))

# Accuracy: 91.65%

# Precision: 61.54%

# Recall: 63.72%

Great! The model is performing good. Maybe it can be enhanced, but for now let’s go and try to explain how it behaves with SHAP.

Model Explanation and Feature Importance

Introducing SHAP

From SHAP’s documentation; SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allocation with local explanations using the classic Shapley values from game theory and their related extensions.

In brief, aside from the math behind, this is how it works. When we pass a model and a training dataset, a base value is calculated, which is the average model output over the training dataset. Then shap values are calculated for each feature per each example. Then each feature, with its shap values, contributes to push the model output from that base value to left and right. In a binary classification model, features that push the model output above the base value contribute to the positive class. While the features contributing to negative class will push towards below the base value.

Let’s have a look at how this looks like. First we define our explainer and calculate the shap values.

explainer = shap.Explainer(clf, X_train, feature_names = np.array(fnames))

shap_values = explainer(X_test)

Now let’s visualize how this works in an example.

Individual Visualization

## we init JS once in our session

shap.initjs()

ind = np.argmax(y_test == 0)

print("actual is:", y_test.values[ind], "while pred is:", y_pred[ind])

shap.plots.force(shap_values[ind])

# actual is: 0.0 while pred is: 0.0

We can see how the shown observations (scaled) of duration, number of employees, 3 month euribor and contact via telephone = 1 push the model below the base value (-3.03) resulting in a negative example. While last contact in June not May and 1.53 scaled consumer price index tried to push to the right but couldn’t beat the blue force.

We can also look at the same graph using waterfall graph representing cumulative sum and how the shap values are added together to give the model output from the base value.

shap.plots.waterfall(shap_values[ind])

We can see the collision between the features pushing left and right until we have the output. The numbers on the left side is the actual observations in the data. While the numbers inside the graph are the shap values for each feature for this example.

Let’s look at a positive example using the same two graphs.

ind = np.argmax(y_test == 1)

print("actual is:", y_test.values[ind], "while pred is:", y_pred[ind])

shap.plots.force(shap_values[ind])

# actual is: 1.0 while pred is: 1.0

shap.plots.waterfall(shap_values[ind])

It is too obvious how values are contributing now to the positive class. We can see from the two examples that high duration contributes to positive class while low duration contributes to negative. Unlike number of employees. High nr_employed contributes to negative and low nr_employed contibutes to positive.

Collective Visualization

We saw how the force plot shows how features explain the model output. However, it is only for one observation. We now will look at the same force plot but for multiple observations at the same time.

shap.force_plot(explainer.expected_value, shap_values.values, X_test, feature_names = fnames)

This plot (interactive in the notebook) is the same as individual force plot. Just imagine multiple force plots rotated 90 degrees and added together for each example. A heatmap also can be viewed to see the effect of each feature on each example.

shap.plots.heatmap(shap_values)

The heatmap shows the shap value of each feature per each example in the data. Also, above the map, the model output per each example is shown. The small line plot going above and below the base line.

Another very useful graph is the beeswarm. It gives an overview of which features are most important for the model. It plots the shap values of every feature for every sample as the heatmap and sorts these features by the sum of its shap value magnitudes over all examples.

shap.plots.beeswarm(shap_values)

We can see that duration is the most important variable and high duration increases the probability for positive class, subscription in our example. While high number of employees decreases the probability for subscription.

We can also get the mean of the absolute shap values for each feature and plot a bar chart.

shap.plots.bar(shap_values)

Fantastic! We have seen how SHAP can help in explaining our logistic regression model with very useful visualizations. The library can explain so many models including neural networks and the project github repo has so many notebook examples.

这篇关于Explain Python Machine Learning Models with SHAP Library的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1066507

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专