最长不下降子序列LIS详解

2024-06-16 12:44
文章标签 详解 最长 序列 下降 lis

本文主要是介绍最长不下降子序列LIS详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最长不下降子序列指的是在一个数字序列中,找到一个最长的子序列(可以不连续),使得这个子序列是不下降(非递减)的。

假如,现有序列A=[1,2,3,-1,-2,7,9](下标从1开始),它的最长不下降子序列是[1,2,3,7,9],长度为5。另外,还有一些子序列是不下降子序列,比如[1,2,3]、[-2,7,9]等,但是都不是最长的。

对于这个问题可以用最原始的方法枚举每一种情况,但是时间复杂度太高。

使用动态规划求解,令dp[i]表示以A[i]结尾的最长不下降子序列长度,这样对A[i]有两种可能:

(1)如果存在A[i]之前的元素A[j](j<i),使得A[j]<=A[i]且dp[j]+1>dp[i](即把A[i]跟在以A[j]结尾的LIS后面时能比当前以A[i]结尾的LIS长度更长),那么就把A[i]跟在以A[j]结尾的LIS后面,形成一条更长的不下降子序列(令dp[i]=dp[j]+1)。

(2)如果A[i]之前的元素都比A[i]大,那么A[i]就只好自己形成一条LIS,但是长度为1,即这个子序列里面只有一个A[i]。

最后以A[i]结尾的LIS长度就是(1)(2)中能形成的最大长度。

由此可以写出状态转移方程:

dp[i]=max\left ( 1,dp[j]+1 \right )

上面的状态转移方程隐含了边界:dp[i]=1,因此只要让i从小到大遍历即可求出整个dp数组。由于dp[i]表示的是以A[i]结尾的LIS长度,因此从整个dp数组中找出最大的那个才是要寻求的整个序列的LIS长度,整体复杂度为O\left ( n^{2} \right )

#include<iostream>
#include<algorithm>
using namespace std;
const int N=100;
int A[N],dp[N];
int main(){int n;cin>>n;for(int i=1;i<=n;i++){cin>>A[i];}int ans=-1;for(int i=1;i<=n;i++){dp[i]=1;//初始条件(即先假设每个元素自成一个子序列) for(int j=1;j<i;j++){if(A[i]>=A[j]&&(dp[j]+1>dp[i])){dp[i]=dp[j]+1;}}ans=max(ans,dp[i]);}cout<<ans;return 0;
}

这篇关于最长不下降子序列LIS详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1066488

相关文章

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

Go路由注册方法详解

《Go路由注册方法详解》Go语言中,http.NewServeMux()和http.HandleFunc()是两种不同的路由注册方式,前者创建独立的ServeMux实例,适合模块化和分层路由,灵活性高... 目录Go路由注册方法1. 路由注册的方式2. 路由器的独立性3. 灵活性4. 启动服务器的方式5.

Java中八大包装类举例详解(通俗易懂)

《Java中八大包装类举例详解(通俗易懂)》:本文主要介绍Java中的包装类,包括它们的作用、特点、用途以及如何进行装箱和拆箱,包装类还提供了许多实用方法,如转换、获取基本类型值、比较和类型检测,... 目录一、包装类(Wrapper Class)1、简要介绍2、包装类特点3、包装类用途二、装箱和拆箱1、装

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动