支持向量机(SVM)中核函数的本质意义

2024-06-16 06:04

本文主要是介绍支持向量机(SVM)中核函数的本质意义,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本质上在做什么?
内积是距离度量,核函数相当于将低维空间的距离映射到高维空间的距离,并非对特征直接映射。
为什么要求核函数是对称且Gram矩阵是半正定?
核函数对应某一特征空间的内积,要求①核函数对称;②Gram矩阵半正定。
证明内积对应的Gram矩阵半正定:
α T K α = [ α 1 , α 2 , ⋯ , α n ] [ κ ( x 1 , x 1 ) κ ( x 1 , x 2 ) ⋯ κ ( x 1 , x n ) κ ( x 2 , x 1 ) κ ( x 2 , x 2 ) ⋯ κ ( x 1 , x n ) ⋮ ⋮ ⋱ ⋮ κ ( x n , x 1 ) κ ( x n , x 2 ) ⋯ κ ( x n , x n ) ] [ α 1 α 2 ⋮ α n ] = ∑ i = 1 n ∑ j = 1 n α i κ ( x i , x j ) α j = ∑ i = 1 n ∑ j = 1 n α i α j ⟨ ϕ ( x i ) , ϕ ( x j ) ⟩ = ⟨ ∑ i = 1 n α i ϕ ( x i ) , ∑ j = 1 n α j ϕ ( x j ) ⟩ = ∥ ∑ i = 1 n α i ϕ ( x i ) ∥ 2 2 ⩾ 0 \begin{aligned} {{ \bm \alpha}^{\rm T} {\bm K} { \bm \alpha}} &=\begin{bmatrix} {\alpha}_1, {\alpha}_2, \cdots, {\alpha}_n \end{bmatrix} \begin{bmatrix} \kappa \left( {\bm x}_1, {\bm x}_1 \right) &\kappa \left( {\bm x}_1, {\bm x}_2 \right) &\cdots &\kappa \left( {\bm x}_1, {\bm x}_n \right) \\ \kappa \left( {\bm x}_2, {\bm x}_1 \right) &\kappa \left( {\bm x}_2, {\bm x}_2 \right) &\cdots &\kappa \left( {\bm x}_1, {\bm x}_n \right) \\ \vdots &\vdots &\ddots &\vdots \\ \kappa \left( {\bm x}_n, {\bm x}_1 \right) &\kappa \left( {\bm x}_n, {\bm x}_2 \right) &\cdots &\kappa \left( {\bm x}_n, {\bm x}_n \right) \\ \end{bmatrix} \begin{bmatrix} {\alpha}_1 \\ {\alpha}_2 \\ \vdots \\ {\alpha}_n \\ \end{bmatrix} \\ &= \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} {\alpha}_i \kappa \left( {\bm x}_i, {\bm x}_j \right) {\alpha}_j \\ &= \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} {\alpha}_i {\alpha}_j \langle \phi \left( {\bm x}_i \right), \phi \left( {\bm x}_j \right) \rangle\\ &= \langle \sum\limits_{i=1}^{n} {\alpha}_i \phi \left( {\bm x}_i \right), \sum\limits_{j=1}^{n} {\alpha}_j \phi \left( {\bm x}_j \right) \rangle \\ &= \lVert \sum\limits_{i=1}^{n} {\alpha}_i \phi \left( {\bm x}_i \right) \rVert^2_2 \\ &\geqslant 0 \end{aligned} αTKα=[α1,α2,,αn] κ(x1,x1)κ(x2,x1)κ(xn,x1)κ(x1,x2)κ(x2,x2)κ(xn,x2)κ(x1,xn)κ(x1,xn)κ(xn,xn) α1α2αn =i=1nj=1nαiκ(xi,xj)αj=i=1nj=1nαiαjϕ(xi),ϕ(xj)=i=1nαiϕ(xi),j=1nαjϕ(xj)=i=1nαiϕ(xi)220

这篇关于支持向量机(SVM)中核函数的本质意义的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1065651

相关文章

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

函数式编程思想

我们经常会用到各种各样的编程思想,例如面向过程、面向对象。不过笔者在该博客简单介绍一下函数式编程思想. 如果对函数式编程思想进行概括,就是f(x) = na(x) , y=uf(x)…至于其他的编程思想,可能是y=a(x)+b(x)+c(x)…,也有可能是y=f(x)=f(x)/a + f(x)/b+f(x)/c… 面向过程的指令式编程 面向过程,简单理解就是y=a(x)+b(x)+c(x)

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

Vector3 三维向量

Vector3 三维向量 Struct Representation of 3D vectors and points. 表示3D的向量和点。 This structure is used throughout Unity to pass 3D positions and directions around. It also contains functions for doin

Unity3D 运动之Move函数和translate

CharacterController.Move 移动 function Move (motion : Vector3) : CollisionFlags Description描述 A more complex move function taking absolute movement deltas. 一个更加复杂的运动函数,每次都绝对运动。 Attempts to

UVM:callback机制的意义和用法

1. 作用         Callback机制在UVM验证平台,最大用处就是为了提高验证平台的可重用性。在不创建复杂的OOP层次结构前提下,针对组件中的某些行为,在其之前后之后,内置一些函数,增加或者修改UVM组件的操作,增加新的功能,从而实现一个环境多个用例。此外还可以通过Callback机制构建异常的测试用例。 2. 使用步骤         (1)在UVM组件中内嵌callback函

8. 自然语言处理中的深度学习:从词向量到BERT

引言 深度学习在自然语言处理(NLP)领域的应用极大地推动了语言理解和生成技术的发展。通过从词向量到预训练模型(如BERT)的演进,NLP技术在机器翻译、情感分析、问答系统等任务中取得了显著成果。本篇博文将探讨深度学习在NLP中的核心技术,包括词向量、序列模型(如RNN、LSTM),以及BERT等预训练模型的崛起及其实际应用。 1. 词向量的生成与应用 词向量(Word Embedding)