【二】【动态规划NEW】91. 解码方法,62. 不同路径,63. 不同路径 II

2024-06-16 06:04

本文主要是介绍【二】【动态规划NEW】91. 解码方法,62. 不同路径,63. 不同路径 II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

91. 解码方法

一条包含字母 A-Z 的消息通过以下映射进行了 编码 :

‘A’ -> “1”
‘B’ -> “2”

‘Z’ -> “26”
要 解码 已编码的消息,所有数字必须基于上述映射的方法,反向映射回字母(可能有多种方法)。例如,“11106” 可以映射为:

“AAJF” ,将消息分组为 (1 1 10 6)
“KJF” ,将消息分组为 (11 10 6)
注意,消息不能分组为 (1 11 06) ,因为 “06” 不能映射为 “F” ,这是由于 “6” 和 “06” 在映射中并不等价。

给你一个只含数字的 非空 字符串 s ,请计算并返回 解码 方法的 总数 。

题目数据保证答案肯定是一个 32 位 的整数。

示例 1:

输入:s = “12”
输出:2
解释:它可以解码为 “AB”(1 2)或者 “L”(12)。
示例 2:

输入:s = “226”
输出:3
解释:它可以解码为 “BZ” (2 26), “VF” (22 6), 或者 “BBF” (2 2 6) 。
示例 3:

输入:s = “06”
输出:0
解释:“06” 无法映射到 “F” ,因为存在前导零(“6” 和 “06” 并不等价)。

提示:

1 <= s.length <= 100
s 只包含数字,并且可能包含前导零。

利用递归思想写动态规划,字符串s返回解码的方法数,f(i)表示0~i区间的解码方法数.
字符串s的长度是n,我们需要得到f(n).
f(i)函数求解0~i区间的解码方法数,
可以让i位置字符单独解码,也可以让i和i-1位置字符两个一起解码.

如果让i位置字符单独解码,此时产生的解码方法数是f(i-1).
如果让i和i-1位置共同解码,此时产生的解码方法数是f(i-2).

如果让i位置字符单独解码需要满足的条件是s[i]!=‘0’.
如果让i和i-1位置字符共同解码需要满足的条件是s[i-1]!=‘0’,并且i-1和i位置字符属于1~26.

根据递归思想直接写动态规划写法.
状态表示,定义dp[i]表示0~i区间的解码方法数.
状态转移方程,如果让i位置字符单独解码,此时产生的解码方法数是dp[i-1].
如果让i和i-1位置共同解码,此时产生的解码方法数是dp[i-2].
填表顺序,填写i位置状态需要用到i-1,i-2位置状态,i需要从小到大.
初始化,特判,最开始的可以直接得出答案的就手动填写,越界的用三目表达式解决.

#define debug // 定义 debug 宏
#ifdef debug // 如果定义了 debug
#define bug(code) do{cout<<"L"<<__LINE__<<":"<<endl;code;}while(0) // 定义 bug 宏,输出当前行号并执行代码块
#else
#define bug(code) do{}while(0) // 如果没有定义 debug,bug 宏为空操作
#endifclass Solution {
public:int ret; // 用于存储结果的整数string s; // 输入字符串vector<int>dp; // 动态规划数组void solve(){ // 解决问题的函数ret=0; // 初始化结果为 0dp.assign(s.size(),-1); // 将动态规划数组初始化为 -1,大小为输入字符串的长度dp[0]=1; // 初始条件,dp[0] 设为 1for(int i=1;i<dp.size();i++){ // 从第 1 个字符开始遍历字符串int ans=0; // 用于存储当前字符的解码方法数if(s[i]!='0') ans+=dp[i-1]; // 如果当前字符不是 '0',则可以单独解码,加上 dp[i-1]if(s[i-1]!='0'&&(s[i-1]-'0')*10+(s[i]-'0')<=26) ans+=(i-2>=0?dp[i-2]:1); // 如果前一个字符不是 '0',且当前和前一个字符组成的数字小于等于 26,则可以合并解码,加上 dp[i-2](如果 i-2 小于 0,则加 1)dp[i]=ans; // 更新 dp[i] 为当前的解码方法数}ret=dp[dp.size()-1]; // 最后的结果是 dp 数组的最后一个值bug( // 如果定义了 debug,输出 dp 数组for(int i=0;i<dp.size();i++){ // 遍历 dp 数组cout<<dp[i]<<" "; // 输出 dp 数组的每一个值}cout<<endl; // 换行);}int numDecodings(string _s) { // 主函数,接收输入字符串ios::sync_with_stdio(0),cin.tie(0),cout.tie(0); // 加速输入输出s=_s; // 将输入字符串赋值给成员变量 sif(s[0]=='0') return 0; // 如果字符串以 '0' 开头,返回 0solve(); // 调用 solve 函数求解return ret; // 返回结果}
};

62. 不同路径

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:
在这里插入图片描述

输入:m = 3, n = 7
输出:28
示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向下 -> 向下
  2. 向下 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向下
    示例 3:

输入:m = 7, n = 3
输出:28
示例 4:

输入:m = 3, n = 3
输出:6

提示:

1 <= m, n <= 100
题目数据保证答案小于等于 2 * 109

f(i,j)表示从(0,0)位置到达(i,j)位置的路径数,我们需要的返回值是f(row,col).
f(i,j)=f(i-1,j)+f(i,j-1).
递归出口,如果是(0,0)位置,返回1.
如果越界了返回0.

利用递归思想直接写动态规划,定义状态标识dp[i][j]表示(0,0)位置到达(i,j)位置的路径数,需要的返回值是dp[row][col].
状态转移方程,dp[i][j]=dp[i-1][j]+dp[i][j-1].
初始化,特判,越界情况用三目表达式解决.
填表顺序,i需要从小到大填写.

#define debug // 定义 debug 宏
#ifdef debug // 如果定义了 debug
#define bug(code) do{cout<<"L"<<__LINE__<<":"<<endl;code;}while(0) // 定义 bug 宏,输出当前行号并执行代码块
#else
#define bug(code) do{}while(0) // 如果没有定义 debug,bug 宏为空操作
#endif  
class Solution {
public:int row, col; // 定义行数和列数int ret; // 用于存储结果的整数vector<vector<int>> dp; // 动态规划数组void solve() { // 解决问题的函数ret = 0; // 初始化结果为 0dp.assign(row + 1, vector<int>(col + 1, -1)); // 初始化 dp 数组为 -1,大小为 (row+1) x (col+1)for (int i = 1; i <= row; i++) { // 遍历每一行for (int j = 1; j <= col; j++) { // 遍历每一列if (i == 1 && j == 1) { // 如果是起点位置 (1, 1)dp[i][j] = 1; // 起点位置的路径数为 1continue; // 跳过后续计算}dp[i][j] = (i - 1 >= 1 ? dp[i - 1][j] : 0) + (j - 1 >= 1 ? dp[i][j - 1] : 0); // 计算当前位置的路径数}}ret = dp[row][col]; // 最后的结果是 dp 数组的右下角值bug( // 如果定义了 debug,输出 dp 数组for (int i = 1; i <= row; i++) { // 遍历 dp 数组的每一行for (int j = 1; j <= col; j++) { // 遍历 dp 数组的每一列cout << dp[i][j] << " "; // 输出 dp 数组的每一个值}cout << endl; // 换行}cout << endl; // 换行);}int uniquePaths(int _m, int _n) { // 主函数,接收输入的行数和列数ios::sync_with_stdio(0), cin.tie(0), cout.tie(0); // 加速输入输出col = _n, row = _m; // 将输入的行数和列数赋值给成员变量solve(); // 调用 solve 函数求解return ret; // 返回结果}
};

63. 不同路径 II

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:
在这里插入图片描述

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:

  1. 向右 -> 向右 -> 向下 -> 向下
  2. 向下 -> 向下 -> 向右 -> 向右
    示例 2:
    在这里插入图片描述

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:

m == obstacleGrid.length
n == obstacleGrid[i].length
1 <= m, n <= 100
obstacleGrid[i][j] 为 0 或 1

网格里面有障碍物,填表的时候,障碍物的位置是不需要填写的,并且为了不影响其他位置的填写,如果是障碍物dp值设置为0即可,如果不设置为0,在状态转移方程哪里就需要多判断一下.
用三目运算符解决越界的情况.

#define debug // 定义 debug 宏
#ifdef debug // 如果定义了 debug
#define bug(code) do{cout<<"L"<<__LINE__<<":"<<endl;code;}while(0) // 定义 bug 宏,输出当前行号并执行代码块
#else
#define bug(code) do{}while(0) // 如果没有定义 debug,bug 宏为空操作
#endif
class Solution {
public:vector<vector<int>> arr; // 存储输入的障碍物网格int ret; // 用于存储结果的整数vector<vector<int>> dp; // 动态规划数组void solve() { // 解决问题的函数dp.assign(arr.size(), vector<int>(arr[0].size(), -1)); // 初始化 dp 数组为 -1,大小与输入网格相同for (int i = 0; i < arr.size(); i++) { // 遍历每一行for (int j = 0; j < arr[0].size(); j++) { // 遍历每一列if (arr[i][j] == 1) dp[i][j] = 0; // 如果当前位置是障碍物,路径数为 0if (arr[i][j] == 1) continue; // 如果当前位置是障碍物,跳过后续计算if (i == 0 && j == 0) { dp[i][j] = 1; continue; } // 起点位置的路径数为 1dp[i][j] = (i - 1 >= 0 ? dp[i - 1][j] : 0) + (j - 1 >= 0 ? dp[i][j - 1] : 0); // 计算当前位置的路径数}}ret = dp[arr.size() - 1][arr[0].size() - 1]; // 最后的结果是 dp 数组的右下角值}int uniquePathsWithObstacles(vector<vector<int>>& _obstacleGrid) { // 主函数,接收输入的障碍物网格ios::sync_with_stdio(0), cin.tie(0), cout.tie(0); // 加速输入输出arr = _obstacleGrid; // 将输入的障碍物网格赋值给成员变量solve(); // 调用 solve 函数求解return ret; // 返回结果}
};

结尾

最后,感谢您阅读我的文章,希望这些内容能够对您有所启发和帮助。如果您有任何问题或想要分享您的观点,请随时在评论区留言。
同时,不要忘记订阅我的博客以获取更多有趣的内容。在未来的文章中,我将继续探讨这个话题的不同方面,为您呈现更多深度和见解。
谢谢您的支持,期待与您在下一篇文章中再次相遇!

这篇关于【二】【动态规划NEW】91. 解码方法,62. 不同路径,63. 不同路径 II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1065643

相关文章

vue基于ElementUI动态设置表格高度的3种方法

《vue基于ElementUI动态设置表格高度的3种方法》ElementUI+vue动态设置表格高度的几种方法,抛砖引玉,还有其它方法动态设置表格高度,大家可以开动脑筋... 方法一、css + js的形式这个方法需要在表格外层设置一个div,原理是将表格的高度设置成外层div的高度,所以外层的div需要

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

Java循环创建对象内存溢出的解决方法

《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在

四种Flutter子页面向父组件传递数据的方法介绍

《四种Flutter子页面向父组件传递数据的方法介绍》在Flutter中,如果父组件需要调用子组件的方法,可以通过常用的四种方式实现,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录方法 1:使用 GlobalKey 和 State 调用子组件方法方法 2:通过回调函数(Callb

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

Java中Object类的常用方法小结

《Java中Object类的常用方法小结》JavaObject类是所有类的父类,位于java.lang包中,本文为大家整理了一些Object类的常用方法,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. public boolean equals(Object obj)2. public int ha

golang1.23版本之前 Timer Reset方法无法正确使用

《golang1.23版本之前TimerReset方法无法正确使用》在Go1.23之前,使用`time.Reset`函数时需要先调用`Stop`并明确从timer的channel中抽取出东西,以避... 目录golang1.23 之前 Reset ​到底有什么问题golang1.23 之前到底应该如何正确的

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

Vue项目中Element UI组件未注册的问题原因及解决方法

《Vue项目中ElementUI组件未注册的问题原因及解决方法》在Vue项目中使用ElementUI组件库时,开发者可能会遇到一些常见问题,例如组件未正确注册导致的警告或错误,本文将详细探讨这些问题... 目录引言一、问题背景1.1 错误信息分析1.2 问题原因二、解决方法2.1 全局引入 Element

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex