【类脑计算】突触可塑性模型之Hebbian学习规则和STDP

2024-06-15 23:20

本文主要是介绍【类脑计算】突触可塑性模型之Hebbian学习规则和STDP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 引言

突触可塑性 (Synaptic plasticity)指经验能够修改神经回路功能的能力。特指基于活动修改突触传递强度的能力,是大脑适应新信息的主要调查机制。分为短期和长期突触可塑性,分别作用于不同时间尺度,对感官刺激的短期适应和长期行为改变及记忆存储至关重要。
在这里插入图片描述

非对称 STDP 学习规则与对称 Hebbian 学习规则的区别

2 Hebbian学习规则

(1)数学模型
Hebbian学习是一种神经网络学习理论,它基于Donald Hebb在1949年提出的假设,即“神经元的联合使用会导致它们之间的连接增强”。这种学习规则通常被称为Hebbian规则或Hebbian学习理论,是神经科学和机器学习中理解和模拟大脑学习机制的基础之一。

Hebbian学习的核心思想是,如果两个神经元经常同时活动,它们之间的突触连接会变得更强壮。这可以用以下简单的数学形式表达:

Δ w i j = η x i x j \Delta w_{ij} = \eta x_i x_j Δwij=ηxixj

其中:

  • Δ w i j \Delta w_{ij} Δwij 是连接权重的增量。
  • η \eta η 是一个表示学习速率的小正数。
  • x i x_i xi x j x_j xj 分别是前一个神经元和后一个神经元的激活值。

原始的Hebbian学习规则可以进一步扩展,包括考虑权重的饱和和遗忘机制。例如,引入一个遗忘因子(forgetting factor) γ \gamma γ,可以使得权重随时间衰减,从而模拟短期记忆的遗忘过程:

w i j ( t + 1 ) = γ w i j ( t ) + η x i ( t ) x j ( t ) w_{ij}(t+1) = \gamma w_{ij}(t) + \eta x_i(t) x_j(t) wij(t+1)=γwij(t)+ηxi(t)xj(t)

其中,

  • w i j ( t ) w_{ij}(t) wij(t) 是在时间 ( t ) 时的权重。
  • w i j ( t + 1 ) w_{ij}(t+1) wij(t+1) 是更新后的权重。

这种形式的Hebbian学习规则可以模拟神经元之间的长期增强(Long-Term Potentiation, LTP),这是学习和记忆形成过程中的关键机制之一。

Hebbian学习规则在神经网络中的实现通常涉及突触权重的更新,以响应输入模式的激活。这种学习机制在多种类型的神经网络中都有应用,包括但不限于Hopfield网络、Boltzmann机、以及某些类型的递归神经网络(RNN)和长短期记忆网络(LSTM)。Hebbian学习是无监督学习的一种形式,因为它不需要外部的误差信号来指导学习过程。
(2)Hebbian学习规则的局限性
基本的Hebbian规则可能导致不稳定,因为如果两个神经元的激活水平最初只是弱正相关,规则会增加它们之间的权重,进而强化这种相关性,导致权重进一步增加。为了解决这个问题,可以采用一些稳定化方法,如限制权重的增长或采用更复杂的规则。
(3)改进的Hebbian学习
算法思想是将Hebbian学习规则与奖励机制结合起来以实现强化学习。首先将Hebbian更新与奖励直接相乘,但这种方法存在稳定性问题,因为它不能可靠地跟踪输入、输出和奖励之间的实际协方差。为了解决这个问题,然后提出了节点扰动规则,该规则通过引入随机扰动到神经激活中,并使用这些扰动而不是原始激活来进行权重更新,从而推动网络朝着奖励方向学习。这种方法不仅能够在生物学上合理地实现,而且还能够使网络从稀疏和延迟的奖励中学习复杂的认知或运动任务,实际上实现了REINFORCE算法,为强化学习提供了一种有效的解决方案。

3 STDP

STDP(Spike-Timing Dependent Plasticity)是一种理论模型,它允许基于神经元脉冲的相对时间来修改它们之间连接的强度。与Hebbian学习规则不同,STDP考虑了前突触和后突触脉冲的精确时间。STDP建议,如果前突触神经元在后突触神经元之前脉冲,它们之间的连接应该被加强;反之,则应该被削弱。STDP在多种生物系统中被观察到,并在神经回路的发展和可塑性中,包括学习和记忆过程中发挥关键作用。
当前突触神经元的脉冲出现在后突触神经元脉冲之前(即 Δ t = t post − t pre > 0 \Delta t = t_{\text{post}} - t_{\text{pre}} > 0 Δt=tposttpre>0),突触权重会增加,这种现象称为长时程增强(Long-Term Potentiation, LTP)。
当前突触神经元的脉冲出现在后突触神经元脉冲之后(即 Δ t = t post − t pre < 0 \Delta t = t_{\text{post}} - t_{\text{pre}} < 0 Δt=tposttpre<0),突触权重会减小,这种现象称为长时程抑制(Long-Term Depression, LTD)。
STDP的数学表达式比Hebbian学习规则更复杂,常见的公式是:

Δ w i j = { A + exp ⁡ ( − Δ t / τ + ) if  Δ t > 0 − A − exp ⁡ ( Δ t / τ − ) if  Δ t < 0 \Delta w_{ij}=\begin{cases}A_+\exp(-\Delta t/\tau_+)&\text{if }\Delta t>0\\-A_-\exp(\Delta t/\tau_-)&\text{if }\Delta t<0\end{cases} Δwij={A+exp(Δt/τ+)Aexp(Δt/τ)if Δt>0if Δt<0
其中, Δ w i j \Delta w{ij} Δwij是神经元i和j之间权重的变化, Δ t \Delta t Δt是前突触和后突触脉冲之间的时间差异, A + A+ A+ A − A- A分别是增强和抑制的幅度, τ + \tau+ τ+ τ − \tau- τ分别是增强和抑制的时间常数。

这篇关于【类脑计算】突触可塑性模型之Hebbian学习规则和STDP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064865

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G