初涉LeNet5处理mnist (CNN卷积神经网络)

2024-06-15 22:38

本文主要是介绍初涉LeNet5处理mnist (CNN卷积神经网络),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os
import numpy as np
#输入节点个数
INPUT_NODE = 784
#输出节点个数
OUTPUT_NODE = 10
#图片的尺寸
IMAGE_SIZE = 28
#通道数
NUM_CHANNELS = 1
#输出节点的个数 
NUM_LABELS = 10
#第一层卷积层的过滤器深度及其尺寸
CONV1_DEEP = 32
CONV1_SIZE = 5
#第二层卷积层的过滤器深度及其尺寸
CONV2_DEEP = 64
CONV2_SIZE = 5
#全连接层的节点个数
FC_SIZE = 512def inference(input_tensor, train, regularizer):#第一层卷积层输入大小是28*28*1=784=INPUT_NODE  #卷积层参数个数计算: CONV1_SIZE*CONV1_SIZE*NUM_CHANNELS*CONV1_DEEP+bias =5*5*1*32+32  过滤器的长*宽*过滤器深度*当前层深度+biases(个数为过滤器深度)#过滤器尺寸5*5深度为32     从strides=[1, 1, 1, 1]可得  步长的长宽方向分别为1  第二维度跟第三维度表示分别为长宽方向步长#输出的深度为CONV1_DEEP=32  由于SAME是全0填充,因此输出的尺寸为当前输入矩阵的长宽分别除以对应的步长 28*28   bias与输出深度个数一致with tf.variable_scope('layer1-conv1'):#weight前两个维度过滤器的尺寸  第三个维度当前层的深度 第四个是过滤器的维度conv1_weights = tf.get_variable("weight", [CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_DEEP],initializer=tf.truncated_normal_initializer(stddev=0.1))conv1_biases = tf.get_variable("bias", [CONV1_DEEP], initializer=tf.constant_initializer(0.0))conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))#给convert卷积的这个结果加上偏置  然后利用激活函数ReLu#第二层 池化层   输入矩阵为第一层的输出  28*28*32    池化层输出与当前输入的深度一致32    池化层采用了2*2的过滤器尺寸  并且SAME方法全0填充#步长的长宽方向分别为2 所以输出尺寸为28/2=14  输出14*14*32的矩阵   池化层可以改变输入的尺寸但是不改变深度with tf.name_scope("layer2-pool1"):#其中relu1是激活函数  ksize是过滤器尺寸  strides是步长 SAME是全0填充  VALID是不适用全0   SAME方法得到的尺寸是输入的尺寸/步长#  VALID方法输出的尺寸是 ( 输入尺寸-过滤器尺寸+1)/2取得上限值pool1 = tf.nn.max_pool(relu1, ksize = [1,2,2,1],strides=[1,2,2,1],padding="SAME")#第三层 卷积层  输入矩阵为14*14*32     本层步长为1  所以输出尺寸为14/1=14    输出的矩阵为14*14*64    with tf.variable_scope("layer3-conv2"):#weight前两个维度过滤器的尺寸  第三个维度当前层的深度 第四个是过滤器的维度 :尺寸为5*5 深度为64的过滤器,  当前层深度为32  输出深度为64conv2_weights = tf.get_variable("weight", [CONV2_SIZE, CONV2_SIZE, CONV1_DEEP, CONV2_DEEP],initializer=tf.truncated_normal_initializer(stddev=0.1))conv2_biases = tf.get_variable("bias", [CONV2_DEEP], initializer=tf.constant_initializer(0.0))conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME')relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))#第四层  池化层输入矩阵为上一层输出 14*14*64 过滤器尺寸为2*2 深度为64  池化层的输出深度同输入深度  步长分别为2#所以输出尺寸是14/2=7   pool2的输出矩阵7*7*64with tf.name_scope("layer4-pool2"):pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')pool_shape = pool2.get_shape().as_list()#pool2.get_shape()获得第四层输出矩阵的维度   #每一层神经网络的输入输出都为一个batch的矩阵 所以这里面的维度也包含了一个batch中数据的个数pool_shape[0]nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]reshaped = tf.reshape(pool2, [pool_shape[0], nodes])#把第四层的输出变为一个batch的向量#  第五层全连接层  输入为一组向量  向量长度为7*7*64=3136=nodes   输出一组长度为FC_SIZE=512的向量with tf.variable_scope('layer5-fc1'):fc1_weights = tf.get_variable("weight", [nodes, FC_SIZE],initializer=tf.truncated_normal_initializer(stddev=0.1))#只有全连接的权重需要加入正则化if regularizer != None: tf.add_to_collection('losses', regularizer(fc1_weights))fc1_biases = tf.get_variable("bias", [FC_SIZE], initializer=tf.constant_initializer(0.1))fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)#dropout在训练时会随机将部分的节点的输出改为0 避免过拟合问题  一般只在全连接层使用if train: fc1 = tf.nn.dropout(fc1, 0.5)#第六层  全连接层  也是输出层 输入为一组长度为512的向量 输出为一组长度为10的向量  这一次输出后会通过softmax得到分类结果      with tf.variable_scope('layer6-fc2'):fc2_weights = tf.get_variable("weight", [FC_SIZE, NUM_LABELS],initializer=tf.truncated_normal_initializer(stddev=0.1))if regularizer != None: tf.add_to_collection('losses', regularizer(fc2_weights))fc2_biases = tf.get_variable("bias", [NUM_LABELS], initializer=tf.constant_initializer(0.1))logit = tf.matmul(fc1, fc2_weights) + fc2_biasesreturn logitBATCH_SIZE = 100
LEARNING_RATE_BASE = 0.01
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 6000
MOVING_AVERAGE_DECAY = 0.99#定义训练过程
def train(mnist):# 定义输出为4维矩阵的placeholderx = tf.placeholder(tf.float32, [BATCH_SIZE,IMAGE_SIZE,IMAGE_SIZE,NUM_CHANNELS],name='x-input')y_ = tf.placeholder(tf.float32, [None, LeNet5_infernece.OUTPUT_NODE], name='y-input')regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)y = inference(x,False,regularizer)global_step = tf.Variable(0, trainable=False)# 定义损失函数、学习率、滑动平均操作以及训练过程。variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)variables_averages_op = variable_averages.apply(tf.trainable_variables())cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))cross_entropy_mean = tf.reduce_mean(cross_entropy)loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,staircase=True)train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)with tf.control_dependencies([train_step, variables_averages_op]):train_op = tf.no_op(name='train')# 初始化TensorFlow持久化类。saver = tf.train.Saver()with tf.Session() as sess:tf.global_variables_initializer().run()for i in range(TRAINING_STEPS):xs, ys = mnist.train.next_batch(BATCH_SIZE)reshaped_xs = np.reshape(xs, (BATCH_SIZE,IMAGE_SIZE,IMAGE_SIZE,NUM_CHANNELS))_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: reshaped_xs, y_: ys})if i % 1000 == 0:print("After %d training step(s), loss on training batch is %g." % (step, loss_value))def main(argv=None):mnist = input_data.read_data_sets("datasets/MNIST_data", one_hot=True)train(mnist)if __name__ == '__main__':main()

这篇关于初涉LeNet5处理mnist (CNN卷积神经网络)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064784

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

Thymeleaf:生成静态文件及异常处理java.lang.NoClassDefFoundError: ognl/PropertyAccessor

我们需要引入包: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><dependency><groupId>org.springframework</groupId><artifactId>sp

jenkins 插件执行shell命令时,提示“Command not found”处理方法

首先提示找不到“Command not found,可能我们第一反应是查看目标机器是否已支持该命令,不过如果相信能找到这里来的朋友估计遇到的跟我一样,其实目标机器是没有问题的通过一些远程工具执行shell命令是可以执行。奇怪的就是通过jenkinsSSH插件无法执行,经一番折腾各种搜索发现是jenkins没有加载/etc/profile导致。 【解决办法】: 需要在jenkins调用shell脚

明明的随机数处理问题分析与解决方案

明明的随机数处理问题分析与解决方案 引言问题描述解决方案数据结构设计具体步骤伪代码C语言实现详细解释读取输入去重操作排序操作输出结果复杂度分析 引言 明明生成了N个1到500之间的随机整数,我们需要对这些整数进行处理,删去重复的数字,然后进行排序并输出结果。本文将详细讲解如何通过算法、数据结构以及C语言来解决这个问题。我们将会使用数组和哈希表来实现去重操作,再利用排序算法对结果

8. 自然语言处理中的深度学习:从词向量到BERT

引言 深度学习在自然语言处理(NLP)领域的应用极大地推动了语言理解和生成技术的发展。通过从词向量到预训练模型(如BERT)的演进,NLP技术在机器翻译、情感分析、问答系统等任务中取得了显著成果。本篇博文将探讨深度学习在NLP中的核心技术,包括词向量、序列模型(如RNN、LSTM),以及BERT等预训练模型的崛起及其实际应用。 1. 词向量的生成与应用 词向量(Word Embedding)

使用协程实现高并发的I/O处理

文章目录 1. 协程简介1.1 什么是协程?1.2 协程的特点1.3 Python 中的协程 2. 协程的基本概念2.1 事件循环2.2 协程函数2.3 Future 对象 3. 使用协程实现高并发的 I/O 处理3.1 网络请求3.2 文件读写 4. 实际应用场景4.1 网络爬虫4.2 文件处理 5. 性能分析5.1 上下文切换开销5.2 I/O 等待时间 6. 最佳实践6.1 使用 as

Level3 — PART 3 — 自然语言处理与文本分析

目录 自然语言处理概要 分词与词性标注 N-Gram 分词 分词及词性标注的难点 法则式分词法 全切分 FMM和BMM Bi-direction MM 优缺点 统计式分词法 N-Gram概率模型 HMM概率模型 词性标注(Part-of-Speech Tagging) HMM 文本挖掘概要 信息检索(Information Retrieval) 全文扫描 关键词

PHP7扩展开发之数组处理

前言 这次,我们将演示如何在PHP扩展中如何对数组进行处理。要实现的PHP代码如下: <?phpfunction array_concat ($arr, $prefix) {foreach($arr as $key => $val) {if (isset($prefix[$key]) && is_string($val) && is_string($prefix[$key])) {$arr[