初涉LeNet5处理mnist (CNN卷积神经网络)

2024-06-15 22:38

本文主要是介绍初涉LeNet5处理mnist (CNN卷积神经网络),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os
import numpy as np
#输入节点个数
INPUT_NODE = 784
#输出节点个数
OUTPUT_NODE = 10
#图片的尺寸
IMAGE_SIZE = 28
#通道数
NUM_CHANNELS = 1
#输出节点的个数 
NUM_LABELS = 10
#第一层卷积层的过滤器深度及其尺寸
CONV1_DEEP = 32
CONV1_SIZE = 5
#第二层卷积层的过滤器深度及其尺寸
CONV2_DEEP = 64
CONV2_SIZE = 5
#全连接层的节点个数
FC_SIZE = 512def inference(input_tensor, train, regularizer):#第一层卷积层输入大小是28*28*1=784=INPUT_NODE  #卷积层参数个数计算: CONV1_SIZE*CONV1_SIZE*NUM_CHANNELS*CONV1_DEEP+bias =5*5*1*32+32  过滤器的长*宽*过滤器深度*当前层深度+biases(个数为过滤器深度)#过滤器尺寸5*5深度为32     从strides=[1, 1, 1, 1]可得  步长的长宽方向分别为1  第二维度跟第三维度表示分别为长宽方向步长#输出的深度为CONV1_DEEP=32  由于SAME是全0填充,因此输出的尺寸为当前输入矩阵的长宽分别除以对应的步长 28*28   bias与输出深度个数一致with tf.variable_scope('layer1-conv1'):#weight前两个维度过滤器的尺寸  第三个维度当前层的深度 第四个是过滤器的维度conv1_weights = tf.get_variable("weight", [CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_DEEP],initializer=tf.truncated_normal_initializer(stddev=0.1))conv1_biases = tf.get_variable("bias", [CONV1_DEEP], initializer=tf.constant_initializer(0.0))conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))#给convert卷积的这个结果加上偏置  然后利用激活函数ReLu#第二层 池化层   输入矩阵为第一层的输出  28*28*32    池化层输出与当前输入的深度一致32    池化层采用了2*2的过滤器尺寸  并且SAME方法全0填充#步长的长宽方向分别为2 所以输出尺寸为28/2=14  输出14*14*32的矩阵   池化层可以改变输入的尺寸但是不改变深度with tf.name_scope("layer2-pool1"):#其中relu1是激活函数  ksize是过滤器尺寸  strides是步长 SAME是全0填充  VALID是不适用全0   SAME方法得到的尺寸是输入的尺寸/步长#  VALID方法输出的尺寸是 ( 输入尺寸-过滤器尺寸+1)/2取得上限值pool1 = tf.nn.max_pool(relu1, ksize = [1,2,2,1],strides=[1,2,2,1],padding="SAME")#第三层 卷积层  输入矩阵为14*14*32     本层步长为1  所以输出尺寸为14/1=14    输出的矩阵为14*14*64    with tf.variable_scope("layer3-conv2"):#weight前两个维度过滤器的尺寸  第三个维度当前层的深度 第四个是过滤器的维度 :尺寸为5*5 深度为64的过滤器,  当前层深度为32  输出深度为64conv2_weights = tf.get_variable("weight", [CONV2_SIZE, CONV2_SIZE, CONV1_DEEP, CONV2_DEEP],initializer=tf.truncated_normal_initializer(stddev=0.1))conv2_biases = tf.get_variable("bias", [CONV2_DEEP], initializer=tf.constant_initializer(0.0))conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME')relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))#第四层  池化层输入矩阵为上一层输出 14*14*64 过滤器尺寸为2*2 深度为64  池化层的输出深度同输入深度  步长分别为2#所以输出尺寸是14/2=7   pool2的输出矩阵7*7*64with tf.name_scope("layer4-pool2"):pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')pool_shape = pool2.get_shape().as_list()#pool2.get_shape()获得第四层输出矩阵的维度   #每一层神经网络的输入输出都为一个batch的矩阵 所以这里面的维度也包含了一个batch中数据的个数pool_shape[0]nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]reshaped = tf.reshape(pool2, [pool_shape[0], nodes])#把第四层的输出变为一个batch的向量#  第五层全连接层  输入为一组向量  向量长度为7*7*64=3136=nodes   输出一组长度为FC_SIZE=512的向量with tf.variable_scope('layer5-fc1'):fc1_weights = tf.get_variable("weight", [nodes, FC_SIZE],initializer=tf.truncated_normal_initializer(stddev=0.1))#只有全连接的权重需要加入正则化if regularizer != None: tf.add_to_collection('losses', regularizer(fc1_weights))fc1_biases = tf.get_variable("bias", [FC_SIZE], initializer=tf.constant_initializer(0.1))fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)#dropout在训练时会随机将部分的节点的输出改为0 避免过拟合问题  一般只在全连接层使用if train: fc1 = tf.nn.dropout(fc1, 0.5)#第六层  全连接层  也是输出层 输入为一组长度为512的向量 输出为一组长度为10的向量  这一次输出后会通过softmax得到分类结果      with tf.variable_scope('layer6-fc2'):fc2_weights = tf.get_variable("weight", [FC_SIZE, NUM_LABELS],initializer=tf.truncated_normal_initializer(stddev=0.1))if regularizer != None: tf.add_to_collection('losses', regularizer(fc2_weights))fc2_biases = tf.get_variable("bias", [NUM_LABELS], initializer=tf.constant_initializer(0.1))logit = tf.matmul(fc1, fc2_weights) + fc2_biasesreturn logitBATCH_SIZE = 100
LEARNING_RATE_BASE = 0.01
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 6000
MOVING_AVERAGE_DECAY = 0.99#定义训练过程
def train(mnist):# 定义输出为4维矩阵的placeholderx = tf.placeholder(tf.float32, [BATCH_SIZE,IMAGE_SIZE,IMAGE_SIZE,NUM_CHANNELS],name='x-input')y_ = tf.placeholder(tf.float32, [None, LeNet5_infernece.OUTPUT_NODE], name='y-input')regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)y = inference(x,False,regularizer)global_step = tf.Variable(0, trainable=False)# 定义损失函数、学习率、滑动平均操作以及训练过程。variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)variables_averages_op = variable_averages.apply(tf.trainable_variables())cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))cross_entropy_mean = tf.reduce_mean(cross_entropy)loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,staircase=True)train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)with tf.control_dependencies([train_step, variables_averages_op]):train_op = tf.no_op(name='train')# 初始化TensorFlow持久化类。saver = tf.train.Saver()with tf.Session() as sess:tf.global_variables_initializer().run()for i in range(TRAINING_STEPS):xs, ys = mnist.train.next_batch(BATCH_SIZE)reshaped_xs = np.reshape(xs, (BATCH_SIZE,IMAGE_SIZE,IMAGE_SIZE,NUM_CHANNELS))_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: reshaped_xs, y_: ys})if i % 1000 == 0:print("After %d training step(s), loss on training batch is %g." % (step, loss_value))def main(argv=None):mnist = input_data.read_data_sets("datasets/MNIST_data", one_hot=True)train(mnist)if __name__ == '__main__':main()

这篇关于初涉LeNet5处理mnist (CNN卷积神经网络)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064784

相关文章

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea

Python结合requests和Cheerio处理网页内容的操作步骤

《Python结合requests和Cheerio处理网页内容的操作步骤》Python因其简洁明了的语法和强大的库支持,成为了编写爬虫程序的首选语言之一,requests库是Python中用于发送HT... 目录一、前言二、环境搭建三、requests库的基本使用四、Cheerio库的基本使用五、结合req

使用Python处理CSV和Excel文件的操作方法

《使用Python处理CSV和Excel文件的操作方法》在数据分析、自动化和日常开发中,CSV和Excel文件是非常常见的数据存储格式,ython提供了强大的工具来读取、编辑和保存这两种文件,满足从基... 目录1. CSV 文件概述和处理方法1.1 CSV 文件格式的基本介绍1.2 使用 python 内

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

MyBatis延迟加载的处理方案

《MyBatis延迟加载的处理方案》MyBatis支持延迟加载(LazyLoading),允许在需要数据时才从数据库加载,而不是在查询结果第一次返回时就立即加载所有数据,延迟加载的核心思想是,将关联对... 目录MyBATis如何处理延迟加载?延迟加载的原理1. 开启延迟加载2. 延迟加载的配置2.1 使用

Android WebView的加载超时处理方案

《AndroidWebView的加载超时处理方案》在Android开发中,WebView是一个常用的组件,用于在应用中嵌入网页,然而,当网络状况不佳或页面加载过慢时,用户可能会遇到加载超时的问题,本... 目录引言一、WebView加载超时的原因二、加载超时处理方案1. 使用Handler和Timer进行超

Python中处理NaN值的技巧分享

《Python中处理NaN值的技巧分享》在数据科学和数据分析领域,NaN(NotaNumber)是一个常见的概念,它表示一个缺失或未定义的数值,在Python中,尤其是在使用pandas库处理数据时,... 目录NaN 值的来源和影响使用 pandas 的 isna()和 isnull()函数直接比较 Na

详解Python中通用工具类与异常处理

《详解Python中通用工具类与异常处理》在Python开发中,编写可重用的工具类和通用的异常处理机制是提高代码质量和开发效率的关键,本文将介绍如何将特定的异常类改写为更通用的ValidationEx... 目录1. 通用异常类:ValidationException2. 通用工具类:Utils3. 示例文