【因果推断python】36_断点回归2

2024-06-15 19:20

本文主要是介绍【因果推断python】36_断点回归2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

RDD 估计

内核加权


RDD 估计

RDD 依赖的关键假设是阈值处潜在结果的平滑性。用比较正式地表述来说,当运行变量从右侧和左侧接近阈值时,潜在结果的极限应该是相同的。

\lim_{r\to c^-}E[Y_{ti}|R_i=r]=\lim_{r\to c^+}E[Y_{ti}|R_i=r]

如果这是真的,我们可以在阈值处找到因果关系

\begin{aligned} \lim_{r\to c^+}E[Y_{ti}|R_i=r]-\lim_{r\to c^-}E[Y_{ti}|R_i=r]& =\lim_{r\to c^+}E[Y_{1i}|R_i=r]-\lim_{r\to c^-}E[Y_{0i}|R_i=r] \\ &=E[Y_{1i}|R_i=r]-E[Y_{0i}|R_i=r] \\ &=E[Y_{1i}-Y_{0i}|R_i=r] \end{aligned}

从其本身意义来说,这是一种局部平均干预效果(LATE),因为我们只能在阈值处知道它。在这种情况下,我们可以将 RDD 视为局部随机试验。对于那些处于阈值附近的人来说,干预可能会采取任何一种方式,有些人可能低于门槛,有些人则可能超过了门槛。在我们的示例中,在同一时间点,有些人刚刚超过 21 岁,有些人刚刚低于 21 岁。决定这一点的是某人是否在几天后出生,这是非常随机的。基于这个原因,RDD 提供了一个非常引人注目的因果故事。它不是 RCT 的黄金标准,但很接近。

现在,要估计阈值处的干预效果,我们需要做的就是估计上面公式中的两个极限值并进行比较。最简单的方法是运行线性回归

为了使其工作,我们将一个高于阈值的虚拟变量与运行变量进行交叉

y_i=\beta_0+\beta_1r_i+\beta_21r_i>c+\beta_31r_i>cr_i

本质上,这与在阈值之上拟合线性回归并在阈值之下拟合另一个线性回归相同。参数 \beta_{0} 是低于阈值的回归的截距,而 \beta_0+\beta_2 是高于阈值的回归的截距。

这就是将运行变量在阈值处取零的技巧发挥作用的地方。在这个预处理步骤之后,阈值变为零。这导致截距 \beta_{0} 成为阈值处的预测值,用于低于它的回归。换句话说,\beta_0=\lim_{r\to c^-}E[Y_{ti}|R_i=r]。同理,\beta_0+\beta_2 是上述结果的极限。威奇的意思是

\lim_{r\to c^+}E[Y_{ti}|R_i=r]-\lim_{r\to c^-}E[Y_{ti}|R_i=r]=\beta_2=E[ATE|R=c]

下面的代码展示了当我们想估计在21 岁时饮酒对死亡造成的影响。

rdd_df = drinking.assign(threshold=(drinking["agecell"] > 0).astype(int))model = smf.wls("all~agecell*threshold", rdd_df).fit()model.summary().tables[1]

这个模型告诉我们,随着饮酒,死亡率会增加 7.6627 个百分点。 另一种说法是,酒精会使各种原因的死亡几率增加 8% ((7.6627+93.6184)/93.6184)。 请注意,这也为我们的因果效应估计提供了标准误差。 在这种情况下,效果具有统计显着性,因为 p 值低于 0.01。

如果我们想直观地验证这个模型,我们可以在我们拥有的数据上显示预测值。 您可以看到,就好像我们有 2 个回归模型:一个用于高于阈值的模型,一个用于低于阈值的模型。

ax = drinking.plot.scatter(x="agecell", y="all", color="C0")
drinking.assign(predictions=model.fittedvalues).plot(x="agecell", y="predictions", ax=ax, color="C1")
plt.title("Regression Discontinuity");

如果我们对其他原因做同样的事,这是我们会得到的结果。

plt.figure(figsize=(8,8))for p, cause in enumerate(["all", "mva", "suicide"], 1):ax = plt.subplot(3,1,p)drinking.plot.scatter(x="agecell", y=cause, ax=ax)m = smf.wls(f"{cause}~agecell*threshold", rdd_df).fit()ate_pct = 100*((m.params["threshold"] + m.params["Intercept"])/m.params["Intercept"] - 1)drinking.assign(predictions=m.fittedvalues).plot(x="agecell", y="predictions", ax=ax, color="C1")plt.title(f"Impact of Alcohol on Death: {np.round(ate_pct, 2)}%")plt.tight_layout()

RDD 告诉我们,酒精会使自杀和车祸死亡的几率增加 15%,这是一个相当大的数字。如果我们想尽量减少死亡率,这些结果是不降低饮酒年龄的有力论据。

内核加权

回归不连续性在很大程度上依赖于线性回归的外推特性。由于我们正在查看 2 条回归线的开头和结尾处的值,因此我们最好正确设置这些限制。可能发生的情况是,回归可能过于关注拟合其他数据点,而代价是在阈值处拟合不佳。如果发生这种情况,我们可能会得到错误的治疗效果衡量标准。

解决此问题的一种方法是为更接近阈值的点赋予更高的权重。有很多方法可以做到这一点,但一种流行的方法是使用 triangular kernel 重新加权样本

K(R,c,h)=|R-c|\leq h*(1-\frac{|R-c|}h)

这个内核的第一部分是我们是否接近阈值的指示函数。多近?这由带宽参数 hℎ 确定。这个内核的第二部分是一个加权函数。随着我们远离阈值,权重变得越来越小。这些权重除以带宽。如果带宽很大,则权重会以较慢的速度变小。如果带宽很小,权重很快就会变为零。

为了更容易理解,下面是这个内核应用于我们的问题的权重。我在这里将带宽设置为 1,这意味着我们只会考虑来自不超过 22 岁且不低于 20 岁的人的数据。

def kernel(R, c, h):indicator = (np.abs(R-c) <= h).astype(float)return indicator * (1 - np.abs(R-c)/h)
plt.plot(drinking["agecell"], kernel(drinking["agecell"], c=0, h=1))
plt.xlabel("agecell")
plt.ylabel("Weight")
plt.title("Kernel Weight by Age");

如果我们将这些权重应用于我们最初的问题,酒精的影响会变得更大,至少对于死于"所有原因"的情况是如此。 它从 7.6627 跃升至 9.7004。 结果仍然非常显著。 另外,请注意我使用的是 wls 而不是 ols

model = smf.wls("all~agecell*threshold", rdd_df,weights=kernel(drinking["agecell"], c=0, h=1)).fit()model.summary().tables[1]

ax = drinking.plot.scatter(x="agecell", y="all", color="C0")
drinking.assign(predictions=model.fittedvalues).plot(x="agecell", y="predictions", ax=ax, color="C1")
plt.title("Regression Discontinuity (Local Regression)");

plt.figure(figsize=(8,8))
weights = kernel(drinking["agecell"], c=0, h=1)for p, cause in enumerate(["all", "mva", "suicide"], 1):ax = plt.subplot(3,1,p)drinking.plot.scatter(x="agecell", y=cause, ax=ax)m = smf.wls(f"{cause}~agecell*threshold", rdd_df, weights=weights).fit()ate_pct = 100*((m.params["threshold"] + m.params["Intercept"])/m.params["Intercept"] - 1)drinking.assign(predictions=m.fittedvalues).plot(x="agecell", y="predictions", ax=ax, color="C1")plt.title(f"Impact of Alcohol on Death: {np.round(ate_pct, 2)}%")plt.tight_layout()

除了自杀之外,似乎使用核函数加权会使对酒精的负面影响更大。再同样的,如果我们想将死亡率降到最低,我们不应该建议降低法定饮酒年龄,因为酒精对死亡率有明显的影响。

这个简单的案例涵盖了当断点回归完美运行​​时会发生什么。接下来,我们将看到一些我们应该运行的诊断步骤,以检查我们对 RDD 的信任程度,并讨论一个我们非常关心的话题:教育对收入的影响。

这篇关于【因果推断python】36_断点回归2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1064349

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

Python QT实现A-star寻路算法

目录 1、界面使用方法 2、注意事项 3、补充说明 用Qt5搭建一个图形化测试寻路算法的测试环境。 1、界面使用方法 设定起点: 鼠标左键双击,设定红色的起点。左键双击设定起点,用红色标记。 设定终点: 鼠标右键双击,设定蓝色的终点。右键双击设定终点,用蓝色标记。 设置障碍点: 鼠标左键或者右键按着不放,拖动可以设置黑色的障碍点。按住左键或右键并拖动,设置一系列黑色障碍点

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目

【Python报错已解决】AttributeError: ‘list‘ object has no attribute ‘text‘

🎬 鸽芷咕:个人主页  🔥 个人专栏: 《C++干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 文章目录 前言一、问题描述1.1 报错示例1.2 报错分析1.3 解决思路 二、解决方法2.1 方法一:检查属性名2.2 步骤二:访问列表元素的属性 三、其他解决方法四、总结 前言 在Python编程中,属性错误(At