【博客718】时序数据库基石:LSM Tree(log-structured merge-tree)

2024-06-15 14:36

本文主要是介绍【博客718】时序数据库基石:LSM Tree(log-structured merge-tree),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

时序数据库基石:LSM Tree(log-structured merge-tree)

1、为什么需要LSM Tree

LSM被设计来提供比传统的B+树更好的写操作吞吐量,通过消去随机的本地更新操作来达到这个目标,使得写入都是顺序写,而不是随机写。
那么为什么这是一个好的方法呢?这个问题的本质还是磁盘随机操作慢,顺序读写快的老问题。这二种操作存在巨大的差距,无论是磁盘还是SSD。

2、LSM Tree是一种思想,非固定实现方式

LSM树是一种将:

  • 磁盘顺序写
  • 多个树状数据结构集合
  • 冷热(新老)数据分级
  • 定期归并
  • 非原地更新

这几种特性统一在一起的思想。

综述:LSM树的核心特点是利用顺序写来提高写性能,但因为分层(此处分层是指的分为内存和文件两部分)的设计会稍微降低读性能,但是通过牺牲小部分读性能换来高性能写,使得LSM树成为非常流行的存储结构。

3、LSM Tree的定义:

  • LSM树是一个横跨内存和磁盘的,包含多颗"子树"的一个森林。
  • LSM树分为Level 0,Level 1,Level 2 … Level n 多颗子树,其中只有Level 0在内存中,其余Level 1-n在磁盘中。
  • 内存中的Level 0子树一般采用排序树(红黑树/AVL树)、跳表或者TreeMap等这类有序的数据结构,方便后续顺序写磁盘。
  • 磁盘中的Level 1-n子树,本质是数据排好序后顺序写到磁盘上的文件,只是叫做树而已。
  • 每一层的子树都有一个阈值大小,达到阈值后会进行合并,合并结果写入下一层。
  • 只有内存中数据允许原地更新,磁盘上数据的变更只允许追加写,不做原地更新。

在这里插入图片描述

4、LSM Tree中的各级结构

在这里插入图片描述

4-1、MemTable

MemTable是在内存中的数据结构,用于保存最近更新的数据,会按照Key有序地组织这些数据,LSM树对于具体如何组织有序地组织数据并没有明确的数据结构定义,例如Hbase使跳跃表来保证内存中key的有序。

因为数据暂时保存在内存中,内存并不是可靠存储,如果断电会丢失数据,因此通常会通过WAL(Write-ahead logging,预写式日志)的方式来保证数据的可靠性。

4-2、Immutable MemTable

当 MemTable达到一定大小后,会转化成Immutable MemTable。Immutable MemTable是将转MemTable变为SSTable的一种中间状态。写操作由新的MemTable处理,在转存过程中不阻塞数据更新操作。

4-3、SSTable

LSM Tree采取读写分离的策略,会优先保证写操作的性能;其数据首先存储内存中,而后需要定期 Flush 到硬盘上。LSM-Tree 通过内存插入与磁盘的顺序写,来达到最优的写性能,因为这会大大降低磁盘的寻道次数,一次磁盘 IO 可以写入多个索引块。HBase, Cassandra, RockDB, LevelDB, SQLite 等都是基于 LSM Tree 来构建索引的数据库;LSM Tree 的树节点可以分为两种,保存在内存中的称之为 MemTable, 保存在磁盘上的称之为 SSTable。

LSM tree 通过一种叫做 SSTable (Sorted Strings Table) 的格式,持久化到硬盘上。正如其名,SSTable 是一种用来存储有序的键值对的格式,其中键的组织是有序存储的。一个SSTable 会包括多个有序的子文件,被称为 segment 。 这些 segments 一旦被写入硬盘,就不可以再修改了。一个简单的SSTable 例子如下图所示:

在这里插入图片描述

SSTable的查找优化:
在这里插入图片描述

在这里插入图片描述

这篇关于【博客718】时序数据库基石:LSM Tree(log-structured merge-tree)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1063727

相关文章

22.手绘Spring DI运行时序图

1.依赖注入发生的时间 当Spring loC容器完成了 Bean定义资源的定位、载入和解析注册以后,loC容器中已经管理类Bean 定义的相关数据,但是此时loC容器还没有对所管理的Bean进行依赖注入,依赖注入在以下两种情况 发生: 、用户第一次调用getBean()方法时,loC容器触发依赖注入。 、当用户在配置文件中将<bean>元素配置了 lazy-init二false属性,即让

21.手绘Spring IOC运行时序图

1.再谈IOC与 DI IOC(lnversion of Control)控制反转:所谓控制反转,就是把原先我们代码里面需要实现的对象创 建、依赖的代码,反转给容器来帮忙实现。那么必然的我们需要创建一个容器,同时需要一种描述来让 容器知道需要创建的对象与对象的关系。这个描述最具体表现就是我们所看到的配置文件。 DI(Dependency Injection)依赖注入:就是指对象是被动接受依赖类

关于如何更好管理好数据库的一点思考

本文尝试从数据库设计理论、ER图简介、性能优化、避免过度设计及权限管理方面进行思考阐述。 一、数据库范式 以下通过详细的示例说明数据库范式的概念,将逐步规范化一个例子,逐级说明每个范式的要求和变换过程。 示例:学生课程登记系统 初始表格如下: 学生ID学生姓名课程ID课程名称教师教师办公室1张三101数学王老师101室2李四102英语李老师102室3王五101数学王老师101室4赵六103物理陈

数据库期末复习知识点

A卷 1. 选择题(30') 2. 判断范式(10') 判断到第三范式 3. 程序填空(20') 4. 分析填空(15') 5. 写SQL(25') 5'一题 恶性 B卷 1. 单选(30') 2. 填空 (20') 3. 程序填空(20') 4. 写SQL(30') 知识点 第一章 数据库管理系统(DBMS)  主要功能 数据定义功能 (DDL, 数据定义语

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测 目录 时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测基本介绍程序设计参考资料 基本介绍 MATLAB实现LSTM时间序列未来多步预测-递归预测。LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为

给数据库的表添加字段

周五有一个需求是这样的: 原来数据库有一个表B,现在需要添加一个字段C,我把代码中增删改查部分进行了修改, 比如insert中也添入了字段C。 但没有考虑到一个问题,数据库的兼容性。因为之前的版本已经投入使用了,再升级的话,需要进行兼容处理,当时脑子都蒙了,转不过来,后来同事解决了这个问题。 现在想想,思路就是,把数据库的表结构存入文件中,如xxx.sql 实时更新该文件: CREAT

SQL Server中,查询数据库中有多少个表,以及数据库其余类型数据统计查询

sqlserver查询数据库中有多少个表 sql server 数表:select count(1) from sysobjects where xtype='U'数视图:select count(1) from sysobjects where xtype='V'数存储过程select count(1) from sysobjects where xtype='P' SE

SQL Server中,添加数据库到AlwaysOn高可用性组条件

1、将数据添加到AlwaysOn高可用性组,需要满足以下条件: 2、更多具体AlwaysOn设置,参考:https://msdn.microsoft.com/zh-cn/library/windows/apps/ff878487(v=sql.120).aspx 注:上述资源来自MSDN。

SQL Server中,用Restore DataBase把数据库还原到指定的路径

restore database 数据库名 from disk='备份文件路径' with move '数据库文件名' to '数据库文件放置路径', move '日志文件名' to '日志文件存放置路径' Go 如: restore database EaseWe from disk='H:\EaseWe.bak' with move 'Ease

数据库原理与安全复习笔记(未完待续)

1 概念 产生与发展:人工管理阶段 → \to → 文件系统阶段 → \to → 数据库系统阶段。 数据库系统特点:数据的管理者(DBMS);数据结构化;数据共享性高,冗余度低,易于扩充;数据独立性高。DBMS 对数据的控制功能:数据的安全性保护;数据的完整性检查;并发控制;数据库恢复。 数据库技术研究领域:数据库管理系统软件的研发;数据库设计;数据库理论。数据模型要素 数据结构:描述数据库