android端使用openCV实现车牌检测

2024-06-15 10:32

本文主要是介绍android端使用openCV实现车牌检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        现在,汽车的踪影无处不在,公路上疾驰,大街边临停,小区中停靠,车库里停泊。管理监控如此庞大数量的汽车是个头疼的问题。精明的人们把目光放在车牌上,因为车牌是汽车的“身份证”。所以车牌识别成为了焦点,而车牌检测是车牌识别的基础和前提。本篇文章,主要讨论使用openCV实现车牌检测

         openCV是开源计算机视觉库,基于计算机视觉与机器学习,提供强大的图像处理能力。我们可以快速集成openCV库到android端,其中一种方式是直接安装openCV Manager,按需使用:启动服务去动态加载。这样前期配置更简单,但需要另外安装一个APK。我更倾向另外一种方式:把依赖的module和动态/静态库都导入Project。具体步骤如下:

        1、导入module

        先从官网下载openCVForAndroid的sdk,以3.2.0版本为例,找到依赖库路径,然后导入module。

        2、导入动态与静态库

        在sdk里面找到lib目录,把所有的.a和.so文件拷贝到项目的libs对应ABI路径下:

        3、配置gradle

        将依赖的静态库编译到native-libs里面:

task nativeLibsToJar(type: Jar, description: 'create a jar archive of the native libs') {destinationDir file("$buildDir/native-libs")baseName 'native-libs'from fileTree(dir: 'libs', include: '**/*.so')into 'lib/'
}tasks.withType(JavaCompile) {compileTask -> compileTask.dependsOn(nativeLibsToJar)
}

        

dependencies {compile fileTree(include: ['*.jar'], dir: 'libs')compile fileTree(dir: "$buildDir/native-libs", include: 'native-libs.jar')......
}

        好了,经过配置三步曲,我们就可以愉快地使用openCV了。

-----------------------------------------------------中场休息-----------------------------------------------------------------

        接下来是调用三步曲:加载openCV、初始化车牌检测器和执行车牌检测

        1、加载openCV

        调用openCVLoader去加载,如果加载成功进行下一步操作:

    private void initOpenCV(){boolean result = OpenCVLoader.initDebug();if(result){Log.i(TAG, "initOpenCV success...");//初始化车牌检测器mPlateDetector = new ObjectDetector(this, R.raw.haarcascade_license_plate,3, new Scalar(255, 0, 0, 0));mObject = new MatOfRect();}else {Log.e(TAG, "initOpenCV fail...");}}

       2、初始化检测器

        使用车牌检测的级联分类xml文件进行初始化:

    /*** 创建级联分类器* @param context 上下文* @param id      级联分类器ID* @return 级联分类器*/private CascadeClassifier createDetector(Context context, int id) {CascadeClassifier javaDetector;InputStream is = null;FileOutputStream os = null;try {is = context.getResources().openRawResource(id);File cascadeDir = context.getDir(LICENSE_PLATE_MODEL, Context.MODE_PRIVATE);File cascadeFile = new File(cascadeDir, id + ".xml");os = new FileOutputStream(cascadeFile);byte[] buffer = new byte[4096];int bytesRead;while ((bytesRead = is.read(buffer)) != -1) {os.write(buffer, 0, bytesRead);}javaDetector = new CascadeClassifier(cascadeFile.getAbsolutePath());if (javaDetector.empty()) {javaDetector = null;}boolean delete = cascadeDir.delete();Log.i("ObjectDetector", "deleteResult=" + delete);return javaDetector;} catch (IOException e) {e.printStackTrace();return null;} finally {try {if (null != is) {is.close();}if (null != os) {os.close();}} catch (IOException e) {e.printStackTrace();}}}

        3、执行车牌检测

        由于openCV操作对象是Mat,所以我们得把Bitmap转成Mat,然后转成Gray灰度图去进行检测:

    /*** 执行车牌检测* @param bitmap bitmap* @return 车牌检测后的bitmap*/private Bitmap doPlateDetecting(Bitmap bitmap){if(mPlateDetector != null && bitmap != null){Mat mRgba = new Mat();Mat mGray = new Mat();//bitmap转成mapUtils.bitmapToMat(bitmap, mRgba);//rgba转成灰度图Imgproc.cvtColor(mRgba, mGray, Imgproc.COLOR_RGBA2GRAY);// 检测车牌Rect[] object = mPlateDetector.detectObject(mGray, mObject);if(object != null && object.length > 0){//检测到车牌区域Rect rect = object[0];//矩形标识Imgproc.rectangle(mRgba, rect.tl(), rect.br(), mPlateDetector.getRectColor(), 3);}//mat转回bitmapUtils.matToBitmap(mRgba, bitmap);}return bitmap;}

        其中,detectObject方法体是调用cascadeClassifier的detectMultiScale来完成检测的:

    public Rect[] detectObject(Mat gray, MatOfRect object) {mCascadeClassifier.detectMultiScale(gray, // 要检查的灰度图像object, // 检测到的车牌1.1, // 表示在前后两次相继的扫描中,搜索窗口的比例系数mMinNeighbors, // 默认是3Objdetect.CASCADE_SCALE_IMAGE,getSize(gray, 80), // 检测目标最小值getSize(gray, 800)); // 检测目标最大值return object.toArray();}

        折腾了这么久,让我们看看车牌检测结果:


        上面的车牌几乎是水平的,那么倾斜的车牌能不能检测到呢?真相就在下面:


        角度发生倾斜的车牌也是可以检测出来,但是在后期的车牌识别,需要进行倾斜校正。如果静态检测还不够意思,那么请看动态检测的效果(转换出来的gif有点模糊,各位莫怪):

        接下来的一篇博客会与大家一起探讨车牌识别,敬请期待。欢迎各位热爱openCV与图像处理的朋友提出建议,相互学习。

这篇关于android端使用openCV实现车牌检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1063204

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time