Linux内核部件分析

2024-06-15 06:58
文章标签 分析 linux 内核 部件

本文主要是介绍Linux内核部件分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在任何处理器平台下,都会有一些原子性操作,供操作系统使用,我们这里只讲x86下面的。在单处理器情况下,每条指令的执行都是原子性的,但在多处理器情况下,只有那些单独的读操作或写操作才是原子性的。为了弥补这一缺点,x86提供了附加的lock前缀,使带lock前缀的读修改写指令也能原子性执行。带lock前缀的指令在操作时会锁住总线,使自身的执行即使在多处理器间也是原子性执行的。xchg指令不带lock前缀也是原子性执行,也就是说xchg执行时默认会锁内存总线。原子性操作是线程间同步的基础,linux专门定义了一种只进行原子操作的类型atomic_t,并提供相关的原子读写调用API。本节就来分析这些原子操作在x86下的实现。
  1. typedef struct {  
  2.     volatile int counter;  
  3. } atomic_t;  

原子类型其实是int类型,只是禁止寄存器对其暂存。

  1. #define ATOMIC_INIT(i)  { (i) }  

原子类型的初始化。32位x86平台下atomic API在arch/x86/include/asm/atomic_32.h中实现。

  1. static inline int atomic_read(const atomic_t *v)  
  2. {  
  3.     return v->counter;  
  4. }  
  5.   
  6. static inline void atomic_set(atomic_t *v, int i)  
  7. {  
  8.     v->counter = i;  
  9. }  

单独的读操作或者写操作,在x86下都是原子性的。

  1. static inline void atomic_add(int i, atomic_t *v)  
  2. {  
  3.     asm volatile(LOCK_PREFIX "addl %1,%0"  
  4.              : "+m" (v->counter)  
  5.              : "ir" (i));  
  6. }  
  7.   
  8. static inline void atomic_sub(int i, atomic_t *v)  
  9. {  
  10.     asm volatile(LOCK_PREFIX "subl %1,%0"  
  11.              : "+m" (v->counter)  
  12.              : "ir" (i));  
  13. }  

atomic_add和atomic_sub属于读修改写操作,实现时需要加lock前缀。

  1. static inline int atomic_sub_and_test(int i, atomic_t *v)  
  2. {  
  3.     unsigned char c;  
  4.   
  5.     asm volatile(LOCK_PREFIX "subl %2,%0; sete %1"  
  6.              : "+m" (v->counter), "=qm" (c)  
  7.              : "ir" (i) : "memory");  
  8.     return c;  
  9. }  

atomic_sub_and_test执行完减操作后检查结果是否为0。

  1. static inline void atomic_inc(atomic_t *v)  
  2. {  
  3.     asm volatile(LOCK_PREFIX "incl %0"  
  4.              : "+m" (v->counter));  
  5. }  
  6.   
  7. static inline void atomic_dec(atomic_t *v)  
  8. {  
  9.     asm volatile(LOCK_PREFIX "decl %0"  
  10.              : "+m" (v->counter));  
  11. }  

atomic_inc和atomic_dec是递增递减操作。

  1. static inline int atomic_dec_and_test(atomic_t *v)  
  2. {  
  3.     unsigned char c;  
  4.   
  5.     asm volatile(LOCK_PREFIX "decl %0; sete %1"  
  6.              : "+m" (v->counter), "=qm" (c)  
  7.              : : "memory");  
  8.     return c != 0;  
  9. }  

atomic_dec_and_test在递减后检查结果是否为0。

  1. static inline int atomic_inc_and_test(atomic_t *v)  
  2. {  
  3.     unsigned char c;  
  4.   
  5.     asm volatile(LOCK_PREFIX "incl %0; sete %1"  
  6.              : "+m" (v->counter), "=qm" (c)  
  7.              : : "memory");  
  8.     return c != 0;  
  9. }  

atomic_inc_and_test在递增后检查结果是否为0。

  1. static inline int atomic_add_negative(int i, atomic_t *v)  
  2. {  
  3.     unsigned char c;  
  4.   
  5.     asm volatile(LOCK_PREFIX "addl %2,%0; sets %1"  
  6.              : "+m" (v->counter), "=qm" (c)  
  7.              : "ir" (i) : "memory");  
  8.     return c;  
  9. }  

atomic_add_negative在加操作后检查结果是否为负数。

  1. static inline int atomic_add_return(int i, atomic_t *v)  
  2. {  
  3.     int __i;  
  4. #ifdef CONFIG_M386   
  5.     unsigned long flags;  
  6.     if (unlikely(boot_cpu_data.x86 <= 3))  
  7.         goto no_xadd;  
  8. #endif   
  9.     /* Modern 486+ processor */  
  10.     __i = i;  
  11.     asm volatile(LOCK_PREFIX "xaddl %0, %1"  
  12.              : "+r" (i), "+m" (v->counter)  
  13.              : : "memory");  
  14.     return i + __i;  
  15.   
  16. #ifdef CONFIG_M386   
  17. no_xadd: /* Legacy 386 processor */  
  18.     local_irq_save(flags);  
  19.     __i = atomic_read(v);  
  20.     atomic_set(v, i + __i);  
  21.     local_irq_restore(flags);  
  22.     return i + __i;  
  23. #endif   
  24. }  

atomic_add_return 不仅执行加操作,而且把相加的结果返回。它是通过xadd这一指令实现的。

  1. static inline int atomic_sub_return(int i, atomic_t *v)  
  2. {  
  3.     return atomic_add_return(-i, v);  
  4. }  

atomic_sub_return 不仅执行减操作,而且把相减的结果返回。它是通过atomic_add_return实现的。

  1. static inline int atomic_cmpxchg(atomic_t *v, int old, int new)  
  2. {  
  3.     return cmpxchg(&v->counter, old, new);  
  4. }  
  5.   
  6. #define cmpxchg(ptr, o, n)                      \   
  7.     ((__typeof__(*(ptr)))__cmpxchg((ptr), (unsigned long)(o),   \  
  8.                        (unsigned long)(n),      \  
  9.                        sizeof(*(ptr))))  
  10.   
  11. static inline unsigned long __cmpxchg(volatile void *ptr, unsigned long old,  
  12.                       unsigned long newint size)  
  13. {  
  14.     unsigned long prev;  
  15.     switch (size) {  
  16.     case 1:  
  17.         asm volatile(LOCK_PREFIX "cmpxchgb %b1,%2"  
  18.                  : "=a"(prev)  
  19.                  : "q"(new), "m"(*__xg(ptr)), "0"(old)  
  20.                  : "memory");  
  21.         return prev;  
  22.     case 2:  
  23.         asm volatile(LOCK_PREFIX "cmpxchgw %w1,%2"  
  24.                  : "=a"(prev)  
  25.                  : "r"(new), "m"(*__xg(ptr)), "0"(old)  
  26.                  : "memory");  
  27.         return prev;  
  28.     case 4:  
  29.         asm volatile(LOCK_PREFIX "cmpxchgl %k1,%2"  
  30.                  : "=a"(prev)  
  31.                  : "r"(new), "m"(*__xg(ptr)), "0"(old)  
  32.                  : "memory");  
  33.         return prev;  
  34.     case 8:  
  35.         asm volatile(LOCK_PREFIX "cmpxchgq %1,%2"  
  36.                  : "=a"(prev)  
  37.                  : "r"(new), "m"(*__xg(ptr)), "0"(old)  
  38.                  : "memory");  
  39.         return prev;  
  40.     }  
  41.     return old;  
  42. }  

atomic_cmpxchg是由cmpxchg指令完成的。它把旧值同atomic_t类型的值相比较,如果相同,就把新值存入atomic_t类型的值中,返回atomic_t类型变量中原有的值。

  1. static inline int atomic_xchg(atomic_t *v, int new)  
  2. {  
  3.     return xchg(&v->counter, new);  
  4. }  
  5.   
  6. #define xchg(ptr, v)                            \   
  7.     ((__typeof__(*(ptr)))__xchg((unsigned long)(v), (ptr), sizeof(*(ptr))))  
  8.   
  9. static inline unsigned long __xchg(unsigned long x, volatile void *ptr,  
  10.                    int size)  
  11. {  
  12.     switch (size) {  
  13.     case 1:  
  14.         asm volatile("xchgb %b0,%1"  
  15.                  : "=q" (x)  
  16.                  : "m" (*__xg(ptr)), "0" (x)  
  17.                  : "memory");  
  18.         break;  
  19.     case 2:  
  20.         asm volatile("xchgw %w0,%1"  
  21.                  : "=r" (x)  
  22.                  : "m" (*__xg(ptr)), "0" (x)  
  23.                  : "memory");  
  24.         break;  
  25.     case 4:  
  26.         asm volatile("xchgl %k0,%1"  
  27.                  : "=r" (x)  
  28.                  : "m" (*__xg(ptr)), "0" (x)  
  29.                  : "memory");  
  30.         break;  
  31.     case 8:  
  32.         asm volatile("xchgq %0,%1"  
  33.                  : "=r" (x)  
  34.                  : "m" (*__xg(ptr)), "0" (x)  
  35.                  : "memory");  
  36.         break;  
  37.     }  
  38.     return x;  
  39. }  

atomic_xchg则是将新值存入atomic_t类型的变量,并将变量的旧值返回。它使用xchg指令实现。

  1. /** 
  2.  * atomic_add_unless - add unless the number is already a given value 
  3.  * @v: pointer of type atomic_t 
  4.  * @a: the amount to add to v... 
  5.  * @u: ...unless v is equal to u. 
  6.  * 
  7.  * Atomically adds @a to @v, so long as @v was not already @u. 
  8.  * Returns non-zero if @v was not @u, and zero otherwise. 
  9.  */  
  10. static inline int atomic_add_unless(atomic_t *v, int a, int u)  
  11. {  
  12.     int c, old;  
  13.     c = atomic_read(v);  
  14.     for (;;) {  
  15.         if (unlikely(c == (u)))  
  16.             break;  
  17.         old = atomic_cmpxchg((v), c, c + (a));  
  18.         if (likely(old == c))  
  19.             break;  
  20.         c = old;  
  21.     }  
  22.     return c != (u);  
  23. }  

atomic_add_unless的功能比较特殊。它检查v是否等于u,如果不是则把v的值加上a,返回值表示相加前v是否等于u。因为在atomic_read和atomic_cmpxchg中间可能有其它的写操作,所以要循环检查自己的值是否被写进去。

  1. #define atomic_inc_not_zero(v) atomic_add_unless((v), 1, 0)   
  2.   
  3. #define atomic_inc_return(v)  (atomic_add_return(1, v))   
  4. #define atomic_dec_return(v)  (atomic_sub_return(1, v))  

atomic_inc_not_zero在v值不是0时加1。

atomic_inc_return对v值加1,并返回相加结果。

atomic_dec_return对v值减1,并返回相减结果。

  1. #define atomic_clear_mask(mask, addr)               \   
  2.     asm volatile(LOCK_PREFIX "andl %0,%1"           \  
  3.              : : "r" (~(mask)), "m" (*(addr)) : "memory")  

atomic_clear_mask清除变量某些位。

  1. #define atomic_set_mask(mask, addr)             \   
  2.     asm volatile(LOCK_PREFIX "orl %0,%1"                \  
  3.              : : "r" (mask), "m" (*(addr)) : "memory")  

atomic_set_mask将变量的某些位置位。

  1. /* Atomic operations are already serializing on x86 */  
  2. #define smp_mb__before_atomic_dec() barrier()   
  3. #define smp_mb__after_atomic_dec()  barrier()   
  4. #define smp_mb__before_atomic_inc() barrier()   
  5. #define smp_mb__after_atomic_inc()  barrier()  

因为x86的atomic操作大多使用原子指令或者带lock前缀的指令。带lock前缀的指令执行前会完成之前的读写操作,对于原子操作来说不会受之前对同一位置的读写操作,所以这里只是用空操作barrier()代替。barrier()的作用相当于告诉编译器这里有一个内存屏障,放弃在寄存器中的暂存值,重新从内存中读入。

本节的atomic_t类型操作是最基础的,为了介绍下面的内容,必须先介绍它。如果可以使用atomic_t类型代替临界区操作,也可以加快不少速度。

这篇关于Linux内核部件分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062736

相关文章

Linux磁盘分区、格式化和挂载方式

《Linux磁盘分区、格式化和挂载方式》本文详细介绍了Linux系统中磁盘分区、格式化和挂载的基本操作步骤和命令,包括MBR和GPT分区表的区别、fdisk和gdisk命令的使用、常见的文件系统格式以... 目录一、磁盘分区表分类二、fdisk命令创建分区1、交互式的命令2、分区主分区3、创建扩展分区,然后

Linux中chmod权限设置方式

《Linux中chmod权限设置方式》本文介绍了Linux系统中文件和目录权限的设置方法,包括chmod、chown和chgrp命令的使用,以及权限模式和符号模式的详细说明,通过这些命令,用户可以灵活... 目录设置基本权限命令:chmod1、权限介绍2、chmod命令常见用法和示例3、文件权限详解4、ch

Linux内核之内核裁剪详解

《Linux内核之内核裁剪详解》Linux内核裁剪是通过移除不必要的功能和模块,调整配置参数来优化内核,以满足特定需求,裁剪的方法包括使用配置选项、模块化设计和优化配置参数,图形裁剪工具如makeme... 目录简介一、 裁剪的原因二、裁剪的方法三、图形裁剪工具四、操作说明五、make menuconfig

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

Linux使用nohup命令在后台运行脚本

《Linux使用nohup命令在后台运行脚本》在Linux或类Unix系统中,后台运行脚本是一项非常实用的技能,尤其适用于需要长时间运行的任务或服务,本文我们来看看如何使用nohup命令在后台... 目录nohup 命令简介基本用法输出重定向& 符号的作用后台进程的特点注意事项实际应用场景长时间运行的任务服

什么是cron? Linux系统下Cron定时任务使用指南

《什么是cron?Linux系统下Cron定时任务使用指南》在日常的Linux系统管理和维护中,定时执行任务是非常常见的需求,你可能需要每天执行备份任务、清理系统日志或运行特定的脚本,而不想每天... 在管理 linux 服务器的过程中,总有一些任务需要我们定期或重复执行。就比如备份任务,通常会选在服务器资

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

如何安装HWE内核? Ubuntu安装hwe内核解决硬件太新的问题

《如何安装HWE内核?Ubuntu安装hwe内核解决硬件太新的问题》今天的主角就是hwe内核(hardwareenablementkernel),一般安装的Ubuntu都是初始内核,不能很好地支... 对于追求系统稳定性,又想充分利用最新硬件特性的 Ubuntu 用户来说,HWEXBQgUbdlna(Har

Linux限制ip访问的解决方案

《Linux限制ip访问的解决方案》为了修复安全扫描中发现的漏洞,我们需要对某些服务设置访问限制,具体来说,就是要确保只有指定的内部IP地址能够访问这些服务,所以本文给大家介绍了Linux限制ip访问... 目录背景:解决方案:使用Firewalld防火墙规则验证方法深度了解防火墙逻辑应用场景与扩展背景:

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结