Linux内核部件分析

2024-06-15 06:58
文章标签 分析 linux 内核 部件

本文主要是介绍Linux内核部件分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在任何处理器平台下,都会有一些原子性操作,供操作系统使用,我们这里只讲x86下面的。在单处理器情况下,每条指令的执行都是原子性的,但在多处理器情况下,只有那些单独的读操作或写操作才是原子性的。为了弥补这一缺点,x86提供了附加的lock前缀,使带lock前缀的读修改写指令也能原子性执行。带lock前缀的指令在操作时会锁住总线,使自身的执行即使在多处理器间也是原子性执行的。xchg指令不带lock前缀也是原子性执行,也就是说xchg执行时默认会锁内存总线。原子性操作是线程间同步的基础,linux专门定义了一种只进行原子操作的类型atomic_t,并提供相关的原子读写调用API。本节就来分析这些原子操作在x86下的实现。
  1. typedef struct {  
  2.     volatile int counter;  
  3. } atomic_t;  

原子类型其实是int类型,只是禁止寄存器对其暂存。

  1. #define ATOMIC_INIT(i)  { (i) }  

原子类型的初始化。32位x86平台下atomic API在arch/x86/include/asm/atomic_32.h中实现。

  1. static inline int atomic_read(const atomic_t *v)  
  2. {  
  3.     return v->counter;  
  4. }  
  5.   
  6. static inline void atomic_set(atomic_t *v, int i)  
  7. {  
  8.     v->counter = i;  
  9. }  

单独的读操作或者写操作,在x86下都是原子性的。

  1. static inline void atomic_add(int i, atomic_t *v)  
  2. {  
  3.     asm volatile(LOCK_PREFIX "addl %1,%0"  
  4.              : "+m" (v->counter)  
  5.              : "ir" (i));  
  6. }  
  7.   
  8. static inline void atomic_sub(int i, atomic_t *v)  
  9. {  
  10.     asm volatile(LOCK_PREFIX "subl %1,%0"  
  11.              : "+m" (v->counter)  
  12.              : "ir" (i));  
  13. }  

atomic_add和atomic_sub属于读修改写操作,实现时需要加lock前缀。

  1. static inline int atomic_sub_and_test(int i, atomic_t *v)  
  2. {  
  3.     unsigned char c;  
  4.   
  5.     asm volatile(LOCK_PREFIX "subl %2,%0; sete %1"  
  6.              : "+m" (v->counter), "=qm" (c)  
  7.              : "ir" (i) : "memory");  
  8.     return c;  
  9. }  

atomic_sub_and_test执行完减操作后检查结果是否为0。

  1. static inline void atomic_inc(atomic_t *v)  
  2. {  
  3.     asm volatile(LOCK_PREFIX "incl %0"  
  4.              : "+m" (v->counter));  
  5. }  
  6.   
  7. static inline void atomic_dec(atomic_t *v)  
  8. {  
  9.     asm volatile(LOCK_PREFIX "decl %0"  
  10.              : "+m" (v->counter));  
  11. }  

atomic_inc和atomic_dec是递增递减操作。

  1. static inline int atomic_dec_and_test(atomic_t *v)  
  2. {  
  3.     unsigned char c;  
  4.   
  5.     asm volatile(LOCK_PREFIX "decl %0; sete %1"  
  6.              : "+m" (v->counter), "=qm" (c)  
  7.              : : "memory");  
  8.     return c != 0;  
  9. }  

atomic_dec_and_test在递减后检查结果是否为0。

  1. static inline int atomic_inc_and_test(atomic_t *v)  
  2. {  
  3.     unsigned char c;  
  4.   
  5.     asm volatile(LOCK_PREFIX "incl %0; sete %1"  
  6.              : "+m" (v->counter), "=qm" (c)  
  7.              : : "memory");  
  8.     return c != 0;  
  9. }  

atomic_inc_and_test在递增后检查结果是否为0。

  1. static inline int atomic_add_negative(int i, atomic_t *v)  
  2. {  
  3.     unsigned char c;  
  4.   
  5.     asm volatile(LOCK_PREFIX "addl %2,%0; sets %1"  
  6.              : "+m" (v->counter), "=qm" (c)  
  7.              : "ir" (i) : "memory");  
  8.     return c;  
  9. }  

atomic_add_negative在加操作后检查结果是否为负数。

  1. static inline int atomic_add_return(int i, atomic_t *v)  
  2. {  
  3.     int __i;  
  4. #ifdef CONFIG_M386   
  5.     unsigned long flags;  
  6.     if (unlikely(boot_cpu_data.x86 <= 3))  
  7.         goto no_xadd;  
  8. #endif   
  9.     /* Modern 486+ processor */  
  10.     __i = i;  
  11.     asm volatile(LOCK_PREFIX "xaddl %0, %1"  
  12.              : "+r" (i), "+m" (v->counter)  
  13.              : : "memory");  
  14.     return i + __i;  
  15.   
  16. #ifdef CONFIG_M386   
  17. no_xadd: /* Legacy 386 processor */  
  18.     local_irq_save(flags);  
  19.     __i = atomic_read(v);  
  20.     atomic_set(v, i + __i);  
  21.     local_irq_restore(flags);  
  22.     return i + __i;  
  23. #endif   
  24. }  

atomic_add_return 不仅执行加操作,而且把相加的结果返回。它是通过xadd这一指令实现的。

  1. static inline int atomic_sub_return(int i, atomic_t *v)  
  2. {  
  3.     return atomic_add_return(-i, v);  
  4. }  

atomic_sub_return 不仅执行减操作,而且把相减的结果返回。它是通过atomic_add_return实现的。

  1. static inline int atomic_cmpxchg(atomic_t *v, int old, int new)  
  2. {  
  3.     return cmpxchg(&v->counter, old, new);  
  4. }  
  5.   
  6. #define cmpxchg(ptr, o, n)                      \   
  7.     ((__typeof__(*(ptr)))__cmpxchg((ptr), (unsigned long)(o),   \  
  8.                        (unsigned long)(n),      \  
  9.                        sizeof(*(ptr))))  
  10.   
  11. static inline unsigned long __cmpxchg(volatile void *ptr, unsigned long old,  
  12.                       unsigned long newint size)  
  13. {  
  14.     unsigned long prev;  
  15.     switch (size) {  
  16.     case 1:  
  17.         asm volatile(LOCK_PREFIX "cmpxchgb %b1,%2"  
  18.                  : "=a"(prev)  
  19.                  : "q"(new), "m"(*__xg(ptr)), "0"(old)  
  20.                  : "memory");  
  21.         return prev;  
  22.     case 2:  
  23.         asm volatile(LOCK_PREFIX "cmpxchgw %w1,%2"  
  24.                  : "=a"(prev)  
  25.                  : "r"(new), "m"(*__xg(ptr)), "0"(old)  
  26.                  : "memory");  
  27.         return prev;  
  28.     case 4:  
  29.         asm volatile(LOCK_PREFIX "cmpxchgl %k1,%2"  
  30.                  : "=a"(prev)  
  31.                  : "r"(new), "m"(*__xg(ptr)), "0"(old)  
  32.                  : "memory");  
  33.         return prev;  
  34.     case 8:  
  35.         asm volatile(LOCK_PREFIX "cmpxchgq %1,%2"  
  36.                  : "=a"(prev)  
  37.                  : "r"(new), "m"(*__xg(ptr)), "0"(old)  
  38.                  : "memory");  
  39.         return prev;  
  40.     }  
  41.     return old;  
  42. }  

atomic_cmpxchg是由cmpxchg指令完成的。它把旧值同atomic_t类型的值相比较,如果相同,就把新值存入atomic_t类型的值中,返回atomic_t类型变量中原有的值。

  1. static inline int atomic_xchg(atomic_t *v, int new)  
  2. {  
  3.     return xchg(&v->counter, new);  
  4. }  
  5.   
  6. #define xchg(ptr, v)                            \   
  7.     ((__typeof__(*(ptr)))__xchg((unsigned long)(v), (ptr), sizeof(*(ptr))))  
  8.   
  9. static inline unsigned long __xchg(unsigned long x, volatile void *ptr,  
  10.                    int size)  
  11. {  
  12.     switch (size) {  
  13.     case 1:  
  14.         asm volatile("xchgb %b0,%1"  
  15.                  : "=q" (x)  
  16.                  : "m" (*__xg(ptr)), "0" (x)  
  17.                  : "memory");  
  18.         break;  
  19.     case 2:  
  20.         asm volatile("xchgw %w0,%1"  
  21.                  : "=r" (x)  
  22.                  : "m" (*__xg(ptr)), "0" (x)  
  23.                  : "memory");  
  24.         break;  
  25.     case 4:  
  26.         asm volatile("xchgl %k0,%1"  
  27.                  : "=r" (x)  
  28.                  : "m" (*__xg(ptr)), "0" (x)  
  29.                  : "memory");  
  30.         break;  
  31.     case 8:  
  32.         asm volatile("xchgq %0,%1"  
  33.                  : "=r" (x)  
  34.                  : "m" (*__xg(ptr)), "0" (x)  
  35.                  : "memory");  
  36.         break;  
  37.     }  
  38.     return x;  
  39. }  

atomic_xchg则是将新值存入atomic_t类型的变量,并将变量的旧值返回。它使用xchg指令实现。

  1. /** 
  2.  * atomic_add_unless - add unless the number is already a given value 
  3.  * @v: pointer of type atomic_t 
  4.  * @a: the amount to add to v... 
  5.  * @u: ...unless v is equal to u. 
  6.  * 
  7.  * Atomically adds @a to @v, so long as @v was not already @u. 
  8.  * Returns non-zero if @v was not @u, and zero otherwise. 
  9.  */  
  10. static inline int atomic_add_unless(atomic_t *v, int a, int u)  
  11. {  
  12.     int c, old;  
  13.     c = atomic_read(v);  
  14.     for (;;) {  
  15.         if (unlikely(c == (u)))  
  16.             break;  
  17.         old = atomic_cmpxchg((v), c, c + (a));  
  18.         if (likely(old == c))  
  19.             break;  
  20.         c = old;  
  21.     }  
  22.     return c != (u);  
  23. }  

atomic_add_unless的功能比较特殊。它检查v是否等于u,如果不是则把v的值加上a,返回值表示相加前v是否等于u。因为在atomic_read和atomic_cmpxchg中间可能有其它的写操作,所以要循环检查自己的值是否被写进去。

  1. #define atomic_inc_not_zero(v) atomic_add_unless((v), 1, 0)   
  2.   
  3. #define atomic_inc_return(v)  (atomic_add_return(1, v))   
  4. #define atomic_dec_return(v)  (atomic_sub_return(1, v))  

atomic_inc_not_zero在v值不是0时加1。

atomic_inc_return对v值加1,并返回相加结果。

atomic_dec_return对v值减1,并返回相减结果。

  1. #define atomic_clear_mask(mask, addr)               \   
  2.     asm volatile(LOCK_PREFIX "andl %0,%1"           \  
  3.              : : "r" (~(mask)), "m" (*(addr)) : "memory")  

atomic_clear_mask清除变量某些位。

  1. #define atomic_set_mask(mask, addr)             \   
  2.     asm volatile(LOCK_PREFIX "orl %0,%1"                \  
  3.              : : "r" (mask), "m" (*(addr)) : "memory")  

atomic_set_mask将变量的某些位置位。

  1. /* Atomic operations are already serializing on x86 */  
  2. #define smp_mb__before_atomic_dec() barrier()   
  3. #define smp_mb__after_atomic_dec()  barrier()   
  4. #define smp_mb__before_atomic_inc() barrier()   
  5. #define smp_mb__after_atomic_inc()  barrier()  

因为x86的atomic操作大多使用原子指令或者带lock前缀的指令。带lock前缀的指令执行前会完成之前的读写操作,对于原子操作来说不会受之前对同一位置的读写操作,所以这里只是用空操作barrier()代替。barrier()的作用相当于告诉编译器这里有一个内存屏障,放弃在寄存器中的暂存值,重新从内存中读入。

本节的atomic_t类型操作是最基础的,为了介绍下面的内容,必须先介绍它。如果可以使用atomic_t类型代替临界区操作,也可以加快不少速度。

这篇关于Linux内核部件分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062736

相关文章

Linux ls命令操作详解

《Linuxls命令操作详解》通过ls命令,我们可以查看指定目录下的文件和子目录,并结合不同的选项获取详细的文件信息,如权限、大小、修改时间等,:本文主要介绍Linuxls命令详解,需要的朋友可... 目录1. 命令简介2. 命令的基本语法和用法2.1 语法格式2.2 使用示例2.2.1 列出当前目录下的文

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Linux中的计划任务(crontab)使用方式

《Linux中的计划任务(crontab)使用方式》:本文主要介绍Linux中的计划任务(crontab)使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言1、linux的起源与发展2、什么是计划任务(crontab)二、crontab基础1、cro

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa