G6 - CycleGAN实战

2024-06-15 05:28
文章标签 实战 cyclegan g6

本文主要是介绍G6 - CycleGAN实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客
  • 🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)

目录

  • 理论知识
    • CycleGAN能做什么
  • 模型结构
    • 损失函数
  • 模型效果
  • 总结与心得体会


理论知识

CycleGAN能做什么

CycleGAN的一个重要的应用领域就是Domain Adapation(域迁移:可以通俗的理解 为画风迁移)。

比如可以把一张普通的风景照变化成梵高的画作,或者将游戏画面变化成真实世界的画面,将一匹正常肤色的马转换为斑马等。
在这里插入图片描述

模型结构

CycleGAN由左右两个GAN网络组成。

G(AB)负责把A类物体(斑马)转换成B类物体(正常的马)
G(BA)负责把B类物体(正常的马)还原成A类物体(斑马)

然后由一个判别器网络D来判别B类物体的真实性

损失函数

CycleGAN的Loss由三部分组成,即:
L o s s = L o s s G A N + L o s s c y c l e + L o s s i d e n t i t y Loss=Loss_{GAN}+Loss_{cycle}+Loss_{identity} Loss=LossGAN+Losscycle+Lossidentity
其中:

  • L o s s G A N Loss_{GAN} LossGAN 用于保证生成器和判别器相互进货,进行保证生成器能产生更真实的图片,这部分与其它的GAN网络无异。
  • L o s s c y c l e Loss_{cycle} Losscycle 用于保证生成器的输出图片与输入图片只是风格不同,而内容相同。即保证:将由图像 x x x生成的图像 Y ^ \hat{Y} Y^再放入生成器 F F F中,使生成的图像 x ^ \hat{x} x^尽可能与原始图像 x x x相似。
  • L o s s i d e n t i t y Loss_{identity} Lossidentity 是映射损失,即用真实的A当做输入,查看生成器是否会原封不到的输出

三种损失函数所捕捉的损失类型如图所示:
三种不同的损失函数

模型效果

直接下载UP提供的软件包,解压data.zip和cyclegan.zip

通过执行 python cyclegan.py来训练模型,默认参数是训练400个epoch需要训练一天时间以上,我们临时修改为训练4个epoch

# 还需要设置一下开始衰减的epoch,只要比n_epochs小就好,这里设置为2
python cyclegan.py --n_epochs 4 --decay_epoch 2

运行日志

模型效果
由于训练时间太短,只是稍微有些莫奈的味道

总结与心得体会

通过对CycleGAN的学习,我理解CycleGAN其实是训练了较前作来说是完整的GAN模型,G模型用来做从通过A生成B,F模型用来做通过B生成A。如果只是分别看GAN的损失,的确是两个不相关的模型,但是作者通过Cycle损失和Identity损失,将两个模型联合在一起进行训练,训练好的生成器G和生成器F就可以实现相反的两种转换。

通过前面的视频也可以看出,不同的帧之间,不一定具有一致性, 所以将一个图像模型直接转换为视频模型,有一个需要考虑的点就是前后帧的一致性问题,这应该是视频生成模型的共性问题。

这篇关于G6 - CycleGAN实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1062547

相关文章

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2