【Python/Pytorch - 网络模型】-- 手把手搭建E3D LSTM网络

2024-06-15 03:36

本文主要是介绍【Python/Pytorch - 网络模型】-- 手把手搭建E3D LSTM网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
文章目录

文章目录

  • 00 写在前面
  • 01 基于Pytorch版本的E3D LSTM代码
  • 02 论文下载

00 写在前面

测试代码,比较重要,它可以大概判断tensor维度在网络传播过程中,各个维度的变化情况,方便改成适合自己的数据集。

需要github上的数据集以及可运行的代码,可以私聊!

01 基于Pytorch版本的E3D LSTM代码

# 库函数调用
from functools import reduce
from src.utils import nice_print, mem_report, cpu_stats
import copy
import operator
import torch
import torch.nn as nn
import torch.nn.functional as F# E3DLSTM模型代码
class E3DLSTM(nn.Module):def __init__(self, input_shape, hidden_size, num_layers, kernel_size, tau):super().__init__()self._tau = tauself._cells = []input_shape = list(input_shape)for i in range(num_layers):cell = E3DLSTMCell(input_shape, hidden_size, kernel_size)# NOTE hidden state becomes input to the next cellinput_shape[0] = hidden_sizeself._cells.append(cell)# Hook to register submodulesetattr(self, "cell{}".format(i), cell)def forward(self, input):# NOTE (seq_len, batch, input_shape)batch_size = input.size(1)c_history_states = []h_states = []outputs = []for step, x in enumerate(input):for cell_idx, cell in enumerate(self._cells):if step == 0:c_history, m, h = self._cells[cell_idx].init_hidden(batch_size, self._tau, input.device)c_history_states.append(c_history)h_states.append(h)# NOTE c_history and h are coming from the previous time stamp, but we iterate over cellsc_history, m, h = cell(x, c_history_states[cell_idx], m, h_states[cell_idx])c_history_states[cell_idx] = c_historyh_states[cell_idx] = h# NOTE hidden state of previous LSTM is passed as input to the next onex = houtputs.append(h)# NOTE Concat along the channelsreturn torch.cat(outputs, dim=1)class E3DLSTMCell(nn.Module):def __init__(self, input_shape, hidden_size, kernel_size):super().__init__()in_channels = input_shape[0]self._input_shape = input_shapeself._hidden_size = hidden_size# memory gates: input, cell(input modulation), forgetself.weight_xi = ConvDeconv3d(in_channels, hidden_size, kernel_size)self.weight_hi = ConvDeconv3d(hidden_size, hidden_size, kernel_size, bias=False)self.weight_xg = copy.deepcopy(self.weight_xi)self.weight_hg = copy.deepcopy(self.weight_hi)self.weight_xr = copy.deepcopy(self.weight_xi)self.weight_hr = copy.deepcopy(self.weight_hi)memory_shape = list(input_shape)memory_shape[0] = hidden_size# self.layer_norm = nn.LayerNorm(memory_shape)self.group_norm = nn.GroupNorm(1, hidden_size) # wzj# for spatiotemporal memoryself.weight_xi_prime = copy.deepcopy(self.weight_xi)self.weight_mi_prime = copy.deepcopy(self.weight_hi)self.weight_xg_prime = copy.deepcopy(self.weight_xi)self.weight_mg_prime = copy.deepcopy(self.weight_hi)self.weight_xf_prime = copy.deepcopy(self.weight_xi)self.weight_mf_prime = copy.deepcopy(self.weight_hi)self.weight_xo = copy.deepcopy(self.weight_xi)self.weight_ho = copy.deepcopy(self.weight_hi)self.weight_co = copy.deepcopy(self.weight_hi)self.weight_mo = copy.deepcopy(self.weight_hi)self.weight_111 = nn.Conv3d(hidden_size + hidden_size, hidden_size, 1)def self_attention(self, r, c_history):batch_size = r.size(0)channels = r.size(1)r_flatten = r.view(batch_size, -1, channels)# BxtaoTHWxCc_history_flatten = c_history.view(batch_size, -1, channels)# Attention mechanism# BxTHWxC x BxtaoTHWxC' = B x THW x taoTHWscores = torch.einsum("bxc,byc->bxy", r_flatten, c_history_flatten)attention = F.softmax(scores, dim=2)return torch.einsum("bxy,byc->bxc", attention, c_history_flatten).view(*r.shape)def self_attention_fast(self, r, c_history):# Scaled Dot-Product but for tensors# instead of dot-product we do matrix contraction on twh dimensionsscaling_factor = 1 / (reduce(operator.mul, r.shape[-3:], 1) ** 0.5)scores = torch.einsum("bctwh,lbctwh->bl", r, c_history) * scaling_factorattention = F.softmax(scores, dim=0)return torch.einsum("bl,lbctwh->bctwh", attention, c_history)def forward(self, x, c_history, m, h):# Normalized shape for LayerNorm is CxT×H×Wnormalized_shape = list(h.shape[-3:])def LR(input):# return F.layer_norm(input, normalized_shape)return self.group_norm(input, normalized_shape) # wzj# R is CxT×H×Wr = torch.sigmoid(LR(self.weight_xr(x) + self.weight_hr(h)))i = torch.sigmoid(LR(self.weight_xi(x) + self.weight_hi(h)))g = torch.tanh(LR(self.weight_xg(x) + self.weight_hg(h)))recall = self.self_attention_fast(r, c_history)# nice_print(**locals())# mem_report()# cpu_stats()c = i * g + self.group_norm(c_history[-1] + recall) # wzji_prime = torch.sigmoid(LR(self.weight_xi_prime(x) + self.weight_mi_prime(m)))g_prime = torch.tanh(LR(self.weight_xg_prime(x) + self.weight_mg_prime(m)))f_prime = torch.sigmoid(LR(self.weight_xf_prime(x) + self.weight_mf_prime(m)))m = i_prime * g_prime + f_prime * mo = torch.sigmoid(LR(self.weight_xo(x)+ self.weight_ho(h)+ self.weight_co(c)+ self.weight_mo(m)))h = o * torch.tanh(self.weight_111(torch.cat([c, m], dim=1)))# TODO is it correct FIFO?c_history = torch.cat([c_history[1:], c[None, :]], dim=0)# nice_print(**locals())return (c_history, m, h)def init_hidden(self, batch_size, tau, device=None):memory_shape = list(self._input_shape)memory_shape[0] = self._hidden_sizec_history = torch.zeros(tau, batch_size, *memory_shape, device=device)m = torch.zeros(batch_size, *memory_shape, device=device)h = torch.zeros(batch_size, *memory_shape, device=device)return (c_history, m, h)class ConvDeconv3d(nn.Module):def __init__(self, in_channels, out_channels, *vargs, **kwargs):super().__init__()self.conv3d = nn.Conv3d(in_channels, out_channels, *vargs, **kwargs)# self.conv_transpose3d = nn.ConvTranspose3d(out_channels, out_channels, *vargs, **kwargs)def forward(self, input):# print(self.conv3d(input).shape, input.shape)# return self.conv_transpose3d(self.conv3d(input))return F.interpolate(self.conv3d(input), size=input.shape[-3:], mode="nearest")class Out(nn.Module):def __init__(self, in_channels, out_channels):super().__init__()self.conv = nn.Conv3d(in_channels, out_channels, kernel_size = 3, stride=1, padding=1)def forward(self, x):return self.conv(x)class E3DLSTM_NET(nn.Module):def __init__(self, input_shape, hidden_size, num_layers, kernel_size, tau, time_steps, output_shape):super().__init__()self.input_shape = input_shapeself.hidden_size = hidden_sizeself.num_layers = num_layersself.kernel_size = kernel_sizeself.tau = tauself.time_steps = time_stepsself.output_shape = output_shapeself.dtype = torch.float32self.encoder = E3DLSTM(input_shape, hidden_size, num_layers, kernel_size, tau).type(self.dtype)self.decoder = nn.Conv3d(hidden_size * time_steps, output_shape[0], kernel_size, padding=(0, 2, 2)).type(self.dtype)self.out = Out(4, 1)def forward(self, input_seq):return self.out(self.decoder(self.encoder(input_seq)))# 测试代码
if __name__ == '__main__':input_shape = (16, 4, 16, 16)output_shape = (16, 1, 16, 16)tau = 2hidden_size = 64kernel = (3, 5, 5)lstm_layers = 4time_steps = 29x = torch.ones([29, 2, 16, 4, 16, 16])model = E3DLSTM_NET(input_shape, hidden_size, lstm_layers, kernel, tau, time_steps, output_shape)print('finished!')f = model(x)print(f)

02 论文下载

Eidetic 3D LSTM: A Model for Video Prediction and Beyond
Eidetic 3D LSTM: A Model for Video Prediction and Beyond
Github链接:e3d_lstm

这篇关于【Python/Pytorch - 网络模型】-- 手把手搭建E3D LSTM网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1062319

相关文章

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.