ECharts实现折线图颜色分段及markline标注

2024-06-14 22:08

本文主要是介绍ECharts实现折线图颜色分段及markline标注,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、预期效果

1)通过点击生成图像按钮来生成折线图
通过点击生成图像按钮来生成折线图
2)生成折线图之后可以点击调整进行折线图分段
生成折线图之后可以点击调整进行折线图分段
3)可以根据传递的参数的不同生成相应的折线图分段
有两个分离点
有多个分离点

二、技术要点

1、需要根据传参分割原有折线图的数据,用于生成不同的series子元素,便于后面的折线图分段展现。
2、折线图平行于y轴的markline实现并不友好,对于高度最高是在初次创建图标的时候就是写死的,因为目前没有找到任何方法可以获取ECharts图标自动生成的Y轴最大值。

三、代码展示

<html>
<body><div class="row"><div class="container"><div class="col-lg-4 col-md-4"><button class="btn btn-default" onclick="initCharts()">生成图像</button></div><div class="col-lg-8 col-md-8"><div id="main" style="height: 300px;"></div><button id="adjust" class="btn btn-primary pull-right" onclick="transCharts(['周三', '周五'])">调整</button></div></div></div>
</body>
<link href="css/bootstrap.css" rel="stylesheet" type="text/css" media="all" />
<script type="text/javascript" src="echarts3/echarts.js"></script>
<script type="text/javascript" src="jquery-2.1.4.min.js"></script>
<script type="text/javascript">var myChart = echarts.init(document.getElementById('main'));function initCharts() {var option = {title: {text: '未来一周气温变化',subtext: '纯属虚构'},tooltip: {trigger: 'axis'},xAxis:  {type: 'category',boundaryGap: false,data: ['周一','周二','周三','周四','周五','周六','周日']},yAxis: {type: 'value',axisLabel: {formatter: '{value} °C'},max: 15},series: [{name:'最高气温',type:'line',data:[6, 8, 11, 10, 12, 13, 10]}]};myChart.clear();myChart.setOption(option);}//根据传入的点进行数据分割, option填充和重新制图function transCharts(splitPoints) {var oldOption = myChart.getOption();var data = oldOption.series[0].data;var dataTime = oldOption.xAxis[0].data;var splitIndex = [];for (var i =0; i < splitPoints.length; i++) {splitIndex.push(dataTime.indexOf(splitPoints[i]));}console.log(splitIndex);var series = [];var index = 0;var seriesData = new Array(splitIndex.length+1);for (var i = 0; i < seriesData.length; i++) seriesData[i] = new Array();for (var i = 0; i < data.length; i++) {console.log(i + '-----------' + index);if (i < splitIndex[index]) {seriesData[index].push(data[i]);for (var j = index+1; j < seriesData.length; j++) {seriesData[j].push('-');}}else if (i == splitIndex[index]) {seriesData[index].push(data[i]);seriesData[++index].push(data[i]);for (var j = index+1; j < seriesData.length; j++) {seriesData[j].push('-');}}else {seriesData[index].push(data[i]);}for (var k = 0; k < seriesData.length; k++) {console.log(seriesData[k]);}console.log(i + '-----------');}for (var i = 0; i < seriesData.length; i++) {series.push({name: i+'',type: 'line',data: seriesData[i]});}var markLineData = [];for (var i = 0; i < splitPoints.length; i++) {markLineData.push([{coord:[splitPoints[i], 0]},{coord:[splitPoints[i], oldOption.yAxis[0].max]}])}series.push({name:'平行于y轴的趋势线',type:'line',markLine: {name:'aa',data: markLineData}})var options = {title: oldOption.title,tooltip: oldOption.tooltip,xAxis:  oldOption.xAxis,yAxis: oldOption.yAxis,series: series
//            series: [
//                {
//                    name: '最高气温',
//                    type: 'line',
//                    data: [6, 8, 11]
//                },
//                {
//                    name: '最高气温1',
//                    type: 'line',
//                    data: ['-', '-', 11, 10, 12]
//                },
//                {
//                    name: '最高气温2',
//                    type: 'line',
//                    data: ['-','-', '-', '-', 12, 13, 10]
//                },
//                {
//                    name:'平行于y轴的趋势线',
//                    type:'line',
//                    //data:[0],
//                    markLine: {
//                        name:'aa',
//                        data: [[
//                            {coord:['周三',0]},
//                            {coord:['周三',15]}//如何获取grid上侧最大值,目前是写死的
//                        ],[
//                            {coord:['周五',0]},
//                            {coord:['周五',15]}//如何获取grid上侧最大值,目前是写死的
//                        ]]
//                    }
//                }
//            ]};myChart.clear();myChart.setOption(options);}
</script>
</html>

四、代码下载

下载地址
静态版本展示

这篇关于ECharts实现折线图颜色分段及markline标注的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1061632

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima