类别朴素贝叶斯CategoricalNB和西瓜数据集

2024-06-14 20:04

本文主要是介绍类别朴素贝叶斯CategoricalNB和西瓜数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CategoricalNB

  • 1 CategoricalNB原理以及用法
  • 2 数据集
    • 2.1 西瓜数据集
    • 2.2 LabelEncoder
    • 2.3 OrdinalEncoder
  • 3 代码实现

1 CategoricalNB原理以及用法

(1)具体原理
具体原理可看:贝叶斯分类器原理
sklearn之CategoricalNB对条件概率的原理如下:
P ( x i = k ∣ y ) = N y , k + α N y + α n i P(x_i = k | y) = \frac{N_{y,k} + \alpha}{N_y + \alpha n_i} P(xi=ky)=Ny+αniNy,k+α
其中:

  • N y , k N_{y,k} Ny,k是在类别y下特征 x i x_i xi取值为k的样本数。
  • N y N_y Ny 是类别y下的总样本数。
  • α \alpha α是平滑参数,用来避免零概率,如果我们将 α \alpha α设置为1,则这个平滑叫做拉普拉斯平滑,如果 α \alpha α小于1,则我们把它叫做利德斯通平滑。
  • n i n_i ni是特征 x i x_i xi的可能取值的数量。

(2)CategoricalNB用法
之后会有详细例子,现在先看用法

class sklearn.naive_bayes.CategoricalNB(*, alpha=1.0, fit_prior=True, class_prior=None)

参数说明:

参数
说明
alphafloat, default=1.0
附加的平滑参数(Laplace/Lidstone),0是不平滑
fit_priorbool, default=True
是否学习类别先验概率。若为False,将使用统一的先验(概率相等)
class_priorarray-like of shape (n_classes,), default=None
类别的先验概率。一经指定先验概率不能随着数据而调整。

属性说明:

属性
说明
category_count_list of arrays of shape (n_features,)
为每个要素保存形状的数组(n_classes,各个要素的n_categories)。每个数组为每个类别和分类的特定特征提供遇到的样本数量。
class_count_ndarray of shape (n_classes,)
拟合期间每个类别遇到的样本数。此值由提供的样本权重加权。
class_log_prior_ndarray of shape (n_classes,)
每个类别的对数先验概率(平滑)。
classes_ndarray of shape (n_classes,)
分类器已知的类别标签
feature_log_prob_list of arrays of shape (n_features,)
为每个特征保形状的数组(n_classes,各个要素的n_categories)。每个数组提供了给定各自特征和类别的分类的经验对数概率log(p(xi|y))
n_features_int
每个样本的特征数量。

方法说明:

方法
说明
fit(X, y[, sample_weight])根据X,y拟合朴素贝叶斯分类器。
get_params([deep])获取这个估计器的参数
partial_fit(X, y[, classes, sample_weight])对一批样本进行增量拟合。
predict(X)对测试向量X进行分类
predict_log_proba(X)返回针对测试向量X的对数概率估计
predict_proba(X)返回针对测试向量X的概率估计
score(X, y[, sample_weight])返回给定测试数据和标签上的平均准确率
set_params(**params)为这个估计器设置参数

对于X矩阵和y矩阵的要求如下:

参数
说明
X{array-like, sparse matrix} of shape (n_samples, n_features)
样本的特征矩阵,其中n_samples是样本数量,n_features是特征数量。在此,假设X的每个特征都来自不同的分类分布。进一步假设每个特征的所有类别均由数字0,…,n-1表示,其中n表示给定特征的类别总数。例如,这可以在顺序编码(OrdinalEncoder)的帮助下实现。
yarray-like of shape (n_samples,)
每个样本所属的标签类别

2 数据集

2.1 西瓜数据集

要对下述的数据集转换成特征矩阵X和标签类别y,则需要认识两种编码

色泽根蒂敲击纹理脐部触感好坏
青绿蜷缩浊响清晰凹陷硬滑好瓜
乌黑蜷缩沉闷清晰凹陷硬滑好瓜
乌黑蜷缩浊响清晰凹陷硬滑好瓜
青绿蜷缩沉闷清晰凹陷硬滑好瓜
浅白蜷缩浊响清晰凹陷硬滑好瓜
青绿稍蜷浊响清晰稍凹软粘好瓜
乌黑稍蜷浊响稍糊稍凹软粘好瓜
乌黑稍蜷浊响清晰稍凹硬滑好瓜
乌黑稍蜷沉闷稍糊稍凹硬滑坏瓜
青绿硬挺清脆清晰平坦软粘坏瓜
浅白硬挺清脆模糊平坦硬滑坏瓜
浅白蜷缩浊响模糊平坦软粘坏瓜
青绿稍蜷浊响稍糊凹陷硬滑坏瓜
浅白稍蜷沉闷稍糊凹陷硬滑坏瓜
乌黑稍蜷浊响清晰稍凹软粘坏瓜
浅白蜷缩浊响模糊平坦硬滑坏瓜
青绿蜷缩沉闷稍糊稍凹硬滑坏瓜

2.2 LabelEncoder

class sklearn.preprocessing.LabelEncoder
  • 对目标标签进行编码,其值介于0和n_classes-1之间。
  • 该转换器应用于编码目标值,即y,而不是输入X。

常用方法:

方法
说明
fit(self, y)适合标签编码器
fit_transform(self, y)适合标签编码器并返回编码的标签
get_params(self[, deep])获取此估计量的参数
inverse_transform(self, y)将标签转换回原始编码
set_params(self, **params)设置此估算器的参数
transform(self, y)将标签转换为标准化的编码

对于y矩阵的要求如下:

参数
说明
yarray-like of shape (n_samples,)
每个样本所属的标签类别

2.3 OrdinalEncoder

class sklearn.preprocessing.OrdinalEncoder(*, categories='auto', dtype=<class 'numpy.float64'>)
  • 将分类特征编码为整数数组。
  • 该转换器的输入应为整数或字符串之类的数组,表示分类(离散)特征所采用的值。要素将转换为序数整数。这将导致每个要素的一列整数(0到n_categories-1)。

参数说明如下:

参数
说明
categories‘auto’ or a list of array-like, default=’auto’
适合标签编码器每个功能的类别(唯一值):
‘auto’:根据训练数据自动确定类别。
list:category [i]保存第i列中预期的类别。传递的类别不应将字符串和数字值混合使用,并且在使用数字值时应进行排序
使用的类别可以在category_属性中找到。
dtypenumber type, default np.float64
所需的输出dtype

常用方法有:

方法
说明
fit(X[, y])使OrdinalEncoder拟合X
get_params([deep])获取此估计量的参数
inverse_transform(X)将数据转换回原始表示形式
set_params(**params)设置此估算器的参数
transform(X)将X转换为序数代码

对X矩阵的要求如下:

参数
说明
Xarray-like, shape [n_samples, n_features]

3 代码实现

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, OrdinalEncoder
from sklearn.naive_bayes import CategoricalNB# 第一步:创建数据集
data = {'色泽': ['青绿', '乌黑', '乌黑', '青绿', '浅白', '青绿', '乌黑', '乌黑', '乌黑', '青绿', '浅白', '浅白', '青绿', '浅白', '乌黑', '浅白', '青绿'],'根蒂': ['蜷缩', '蜷缩', '蜷缩', '蜷缩', '蜷缩', '稍蜷', '稍蜷', '稍蜷', '稍蜷', '硬挺', '硬挺', '蜷缩', '稍蜷', '稍蜷', '稍蜷', '蜷缩', '蜷缩'],'敲击': ['浊响', '沉闷', '浊响', '沉闷', '浊响', '浊响', '浊响', '浊响', '沉闷', '清脆', '清脆', '浊响', '浊响', '沉闷', '浊响', '浊响', '沉闷'],'纹理': ['清晰', '清晰', '清晰', '清晰', '清晰', '清晰', '稍糊', '清晰', '稍糊', '清晰', '模糊', '模糊', '稍糊', '稍糊', '清晰', '模糊', '稍糊'],'脐部': ['凹陷', '凹陷', '凹陷', '凹陷', '凹陷', '稍凹', '稍凹', '稍凹', '稍凹', '平坦', '平坦', '平坦', '凹陷', '凹陷', '稍凹', '平坦', '稍凹'],'触感': ['硬滑', '硬滑', '硬滑', '硬滑', '硬滑', '软粘', '软粘', '硬滑', '硬滑', '软粘', '硬滑', '软粘', '硬滑', '硬滑', '软粘', '硬滑', '硬滑'],'好坏': ['好瓜', '好瓜', '好瓜', '好瓜', '好瓜', '好瓜', '好瓜', '好瓜', '坏瓜', '坏瓜', '坏瓜', '坏瓜', '坏瓜', '坏瓜', '坏瓜', '坏瓜', '坏瓜']
}df = pd.DataFrame(data)# 第二步:编码# 标签编码
label_encoder = LabelEncoder()
df['好坏'] = label_encoder.fit_transform(df['好坏'])# 对分类特征进行Ordinal编码
ordinal_encoder = OrdinalEncoder()
categorical_features = df.columns[:-1]  # 除最后一列“好坏”之外的所有列
df[categorical_features] = ordinal_encoder.fit_transform(df[categorical_features])# 确定特征X和标签y
X = df.drop('好坏', axis=1)
y = df['好坏']# 第三步:划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 第四步:训练模型
model = CategoricalNB()
model.fit(X_train, y_train)# 输出预测概率
probabilities = model.predict_proba(X_test)
print("Probabilities:\n", probabilities)
print('精确度:', model.score(X_test, y_test))

首先看一下X矩阵和y矩阵,如图所示:
X矩阵
X矩阵
y矩阵
y矩阵
代码准确率结果如下:
准确率

这篇关于类别朴素贝叶斯CategoricalNB和西瓜数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1061381

相关文章

【服务器运维】MySQL数据存储至数据盘

查看磁盘及分区 [root@MySQL tmp]# fdisk -lDisk /dev/sda: 21.5 GB, 21474836480 bytes255 heads, 63 sectors/track, 2610 cylindersUnits = cylinders of 16065 * 512 = 8225280 bytesSector size (logical/physical)

SQL Server中,查询数据库中有多少个表,以及数据库其余类型数据统计查询

sqlserver查询数据库中有多少个表 sql server 数表:select count(1) from sysobjects where xtype='U'数视图:select count(1) from sysobjects where xtype='V'数存储过程select count(1) from sysobjects where xtype='P' SE

数据时代的数字企业

1.写在前面 讨论数据治理在数字企业中的影响和必要性,并介绍数据治理的核心内容和实践方法。作者强调了数据质量、数据安全、数据隐私和数据合规等方面是数据治理的核心内容,并介绍了具体的实践措施和案例分析。企业需要重视这些方面以实现数字化转型和业务增长。 数字化转型行业小伙伴可以加入我的星球,初衷成为各位数字化转型参考库,星球内容每周更新 个人工作经验资料全部放在这里,包含数据治理、数据要

如何在Java中处理JSON数据?

如何在Java中处理JSON数据? 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将探讨在Java中如何处理JSON数据。JSON(JavaScript Object Notation)作为一种轻量级的数据交换格式,在现代应用程序中被广泛使用。Java通过多种库和API提供了处理JSON的能力,我们将深入了解其用法和最佳

两个基因相关性CPTAC蛋白组数据

目录 蛋白数据下载 ①蛋白数据下载 1,TCGA-选择泛癌数据  2,TCGA-TCPA 3,CPTAC(非TCGA) ②蛋白相关性分析 1,数据整理 2,蛋白相关性分析 PCAS在线分析 蛋白数据下载 CPTAC蛋白组学数据库介绍及数据下载分析 – 王进的个人网站 (jingege.wang) ①蛋白数据下载 可以下载泛癌蛋白数据:UCSC Xena (xena

AI学习指南机器学习篇-朴素贝叶斯处理连续特征和离散特征

AI学习指南机器学习篇-朴素贝叶斯处理连续特征和离散特征 在机器学习领域,朴素贝叶斯是一种常用的分类算法,它的简单性和高效性使得它在实际应用中得到了广泛的应用。然而,在使用朴素贝叶斯算法进行分类时,我们通常会面临一个重要的问题,就是如何处理连续特征和离散特征。因为朴素贝叶斯算法基于特征的条件独立性假设,所以对于不同类型的特征,我们需要采取不同的处理方式。 在本篇博客中,我们将探讨如何有效地处理

中国341城市生态系统服务价值数据集(2000-2020年)

生态系统服务反映了人类直接或者间接从自然生态系统中获得的各种惠益,对支撑和维持人类生存和福祉起着重要基础作用。目前针对全国城市尺度的生态系统服务价值的长期评估还相对较少。我们在Xie等(2017)的静态生态系统服务当量因子表基础上,选取净初级生产力,降水量,生物迁移阻力,土壤侵蚀度和道路密度五个变量,对生态系统供给服务、调节服务、支持服务和文化服务共4大类和11小类的当量因子进行了时空调整,计算了

【计算机网络篇】数据链路层(12)交换机式以太网___以太网交换机

文章目录 🍔交换式以太网🛸以太网交换机 🍔交换式以太网 仅使用交换机(不使用集线器)的以太网就是交换式以太网 🛸以太网交换机 以太网交换机本质上就是一个多接口的网桥: 交换机的每个接口考研连接计算机,也可以理解集线器或另一个交换机 当交换机的接口与计算机或交换机连接时,可以工作在全双工方式,并能在自身内部同时连通多对接口,使每一对相互通信的计算机都能像

使用Jsoup抓取数据

问题 最近公司的市场部分布了一个问题,到一个网站截取一下医院的数据。刚好我也被安排做。后来,我发现为何不用脚本去抓取呢? 抓取的数据如下: Jsoup的使用实战代码 结构 Created with Raphaël 2.1.0 开始 创建线程池 jsoup读取网页 解析Element 写入sqlite 结束

Excel实用技巧——二级下拉菜单、数据验证

EXCEL系列文章目录   Excel系列文章是本人亲身经历职场之后萌发的想法,为什么Excel覆盖如此之广,几乎每个公司、学校、家庭都在使用,但是它深藏的宝藏功能却很少被人使用,PQ、BI这些功能同样适用于数据分析;并且在一些需要简单及时的数据分析项目前,Excel是完胜python、R、SPSS这些科学专业的软件的。因此决心开启Excel篇章。 数据分析为什么要学Excel Excel图表