使用多进程和 Scrapy 实现高效的 Amazon 爬虫系统

2024-06-14 17:28

本文主要是介绍使用多进程和 Scrapy 实现高效的 Amazon 爬虫系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这篇博客中,将展示如何使用多进程和 Scrapy 来构建一个高效的 Amazon 爬虫系统。通过多进程处理,提高爬虫的效率和稳定性,同时利用 Redis 进行请求调度和去重。

项目结构

  1. Scrapy 爬虫:负责从 Amazon 抓取数据。
  2. MongoDB:存储待爬取的链接。
  3. Redis:用于请求调度和去重。
  4. 多进程管理:通过 Python 的 multiprocessing 模块来管理多个爬虫进程。

代码实现

首先,我们定义了一些基本配置和导入所需的库:

import os
import traceback
from scrapy.crawler import CrawlerProcess
from scrapy.utils.project import get_project_settings
from multiprocessing import Process, Pool, active_children
import pymongoMONGODB_HOST = '127.0.0.1'
MONGODB_PORT = 27017
MONGODB_DB = 'AmazonSpiderProject'
MONGODB_NEW_LINK_COL = 'amazon_NewReleases_url'
QUERY = {'status': 0}
REDIS_URL = 'redis://127.0.0.1:6379/2'

爬虫函数

spiderList 函数负责配置并启动 Scrapy 爬虫:

def spiderList(meta):os.environ['SCRAPY_SETTINGS_MODULE'] = 'scrapy_amazon_list_spider.settings'settings = get_project_settings()settings.set('ITEM_PIPELINES', {"scrapy_amazon_list_spider.pipelines.ScrapyAmazonListPipeline": 300})settings.set('SCHEDULER', "scrapy_redis.scheduler.Scheduler")settings.set('DUPEFILTER_CLASS', "scrapy_redis.dupefilter.RFPDupeFilter")settings.set('SCHEDULER_QUEUE_CLASS', 'scrapy_redis.queue.SpiderPriorityQueue')settings.set('SCHEDULER_PERSIST', True)settings.set('REDIS_URL', REDIS_URL)process = CrawlerProcess(settings)process.crawl("amazon_list_new", meta=meta)process.start()

运行爬虫进程

run_spider_process 函数负责启动一个新的爬虫进程,并处理异常:

def run_spider_process(chunk):print(f"进程 ID: {os.getpid()}")print(f"剩余活跃进程数: {len(active_children())}")print(f"要处理的项目数: {len(chunk)}")try:spiderList(meta=chunk)except Exception as e:print(f"发生错误: {e}")traceback.print_exc()

主函数

main 函数负责从 MongoDB 获取待爬取的链接,并将其分批提交给多进程池:

def main():client = pymongo.MongoClient(host=MONGODB_HOST, port=MONGODB_PORT)db = client[MONGODB_DB]col = db[MONGODB_NEW_LINK_COL]batch_size = 100offset = 0while True:print('起始索引值:', offset)find_datas = col.find(QUERY).skip(offset).limit(batch_size)offset += batch_sizemeta = list(find_datas)if not meta:breakwith Pool(processes=3) as pool:pool.map(run_spider_process, [meta])if __name__ == '__main__':main()

代码分析

1. 配置与初始化

  • 定义 MongoDB 和 Redis 的连接配置。
  • 导入必要的模块。

2. 爬虫配置与启动

  • spiderList 函数中,配置 Scrapy 爬虫的设置,包括启用 Redis 调度器和去重器。
  • 使用 CrawlerProcess 启动 Scrapy 爬虫,并传递需要处理的 meta 数据。

3. 运行爬虫进程

  • run_spider_process 函数中,使用 os.getpid() 打印当前进程 ID。
  • 使用 active_children() 查看当前活跃的子进程数。
  • 使用 try-except 块处理可能的异常,并打印错误信息。

4. 主函数逻辑

  • 连接到 MongoDB,获取待处理的数据。
  • 使用 skiplimit 方法对数据进行分页处理。
  • 使用 Pool 创建一个多进程池,并将任务提交给多进程池进行并发执行。

优化建议

1. 进程管理

  • 可以根据服务器性能调整进程池大小,以便充分利用系统资源。
  • 考虑使用进程池中的 apply_async 方法来处理结果回调,进一步优化并发处理。

2. 错误处理

  • run_spider_process 中记录错误日志,以便后续分析和改进。

3. 数据存储

  • 定期清理 MongoDB 和 Redis 中的旧数据,保持系统的良好性能。

结语

通过上述代码和步骤,构建了一个简单使用多进程和redis实现请求去重的 Amazon 爬虫系统。 如果你有任何问题或建议,欢迎在评论区留言讨论!

作者:pycode
链接:https://juejin.cn/post/7379262453727543311

这篇关于使用多进程和 Scrapy 实现高效的 Amazon 爬虫系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1061043

相关文章

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数