多源最短路径算法 -- 弗洛伊德(Floyd)算法

2024-06-14 13:52

本文主要是介绍多源最短路径算法 -- 弗洛伊德(Floyd)算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 简介

        Floyd算法,全名为Floyd-Warshall算法,亦称弗洛伊德算法或佛洛依德算法是一种用于寻找给定加权图中所有顶点对之间的最短路径的算法。这种算法以1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德的名字命名。

2. 核心思想

        通过考虑图中所有可能的中转点,逐步更新两点间的最短路径长度和路径信息,直至找到最终的最短路径。有的人也称之为插点法。

3. 图解

3.1 初始化

初始化:设置图的邻接矩阵dict,其中dict[i][j]表示顶点i到顶点j的直接路径权重;如果两顶点不直接相连,则设为无穷大INF。

3.2  更新最短路径

更新最短路径:把每个节点当作是中转节点,更新矩阵中的距离。

通过中间顶点 k 从顶点 i 到顶点 j 的距离 小于 直接从顶点 i 到顶点 j 的距离,更新 dist[i][j] = dist[i][k] + dist[k][j]

把0作为中转节点,此时表中黄色部分是不需要改的(都是从0出发或是直接到0的距离),

当更新 dict[1][2]也就是1 -> 2 时,需判断 1 -> 0 和 0 -> 2 的和是否比直达的1 -> 2更小。

若路径中有INF就无需更新,比如此时1 -> 0 就是INF,表示1 -> 2 以 0 作为中转点时不可能比 1 -> 2 直达的更小,所以此时不需要更新。

更新完 0作为中转节点时 数组为:

更新完 1作为中转节点时 数组为:

 

 更新完 2作为中转节点时 数组为:

 更新完 3作为中转节点时 数组为:

3.3 结果

        最终结果的数组中就是点到点的最短路径。

4. 代码实现

        定义了一个4x4的图,其中INF表示两个顶点之间没有直接相连的边。然后调用floyd方法计算所有顶点对之间的最短路径,并输出结果。

public class Floyd {private static final int INF = Integer.MAX_VALUE; public static void floyd(int[][] graph) {int n = graph.length; // 获取图的顶点数int[][] dist = new int[n][n]; // 初始化矩阵for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {dist[i][j] = graph[i][j]; }}// 使用Floyd算法计算所有顶点之间的最短路径for (int k = 0; k < n; k++) {for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {if (dist[i][k] != INF && dist[k][j] != INF&& dist[i][k] + dist[k][j] < dist[i][j]) { // 更新i到j的最短路径dist[i][j] = dist[i][k] + dist[k][j];}}}}// 输出所有顶点之间的最短路径for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {System.out.print(dist[i][j] + " ");}System.out.println();}}public static void main(String[] args) {int[][] graph = {{0,   5  , 3  , 10 },{INF, 0  , 3  , INF},{5  , INF, 0  , 1  },{INF, INF, 4  , 0  }};floyd(graph); }
}

5. floyd算法和Dijkstra算法的区别

        Floyd算法和Dijkstra算法都是计算图中顶点之间最短路径的著名算法,但它们的应用场景、原理和性能存在显著差异。具体分析如下:

  • 应用场景

    • Dijkstra算法:适用于单源最短路径问题,即从单个源点到其他所有点的最短路径。它不能处理具有负权边的图。
    • Floyd算法:用于求解任意顶点对(多源最短路径问题)的最短路径,可以处理负权边,但不能处理包含负权回路的图。
  • 算法原理

    • Dijkstra算法:基于贪心策略,每次从未确定的顶点中选择一个距离源点最近的顶点,然后更新其邻接顶点的距离。该算法需要使用优先队列来选择下一个顶点,并且初始时除源点外的所有顶点的距离都设置为无穷大。
    • Floyd算法:通过动态规划的方式,利用三层嵌套循环来计算所有顶点对之间的最短路径。算法的基本操作是比较(u,k) + (k,v)与(u,v)的长度,并据此更新(u,v)的长度。
  • 时间复杂度

    • Dijkstra算法:使用优先队列优化后的时间复杂度是O((V+E) log V),其中V是顶点数,E是边数。如果使用邻接矩阵实现且没有优化,复杂度会是O(V^2)。
    • Floyd算法:时间复杂度为O(V^3),因为算法需要三层循环遍历所有顶点对和可能的中间顶点。
  • 额外功能

    • Dijkstra算法:可以输出从源点到各顶点的最短路径。
    • Floyd算法:可以输出任意两个顶点间的最短路径及其长度。

        总之,Dijkstra算法适合解决单源最短路径问题,尤其是在没有负权边的情况下,而Floyd算法适合解决所有顶点对之间的最短路径问题,尽管它可以处理负权边的情况,却不能容忍负权回路的存在。

        

6. 总结 

        总的来说,Floyd算法是一种计算图中所有顶点对之间最短路径的动态规划算法,它能够处理包含负权边的图,但不允许存在负权回路。适用于小型到中等规模稠密图的算法,尤其是在需要全局最短路径信息时。对于大型稀疏图或者单源最短路径问题,其他算法如Dijkstra算法可能更加合适。

这篇关于多源最短路径算法 -- 弗洛伊德(Floyd)算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1060595

相关文章

python获取当前文件和目录路径的方法详解

《python获取当前文件和目录路径的方法详解》:本文主要介绍Python中获取当前文件路径和目录的方法,包括使用__file__关键字、os.path.abspath、os.path.realp... 目录1、获取当前文件路径2、获取当前文件所在目录3、os.path.abspath和os.path.re

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

uva 10099(floyd变式)

题意: 有一个导游要带着一群旅客从一个城市到达另一个城市,每个城市之间有最大的旅客流量限制。 问最少几趟能将这些旅客从一个城市搞到另一个城市。 解析: 用floyd找出最小流量中的最大边,然后次数就是   ceil(总人数 / 最大承载量 - 1),-1的意思是导游每次也要在车上。 ps.老司机哭晕在厕所 代码: #include <iostream>#includ