压缩感知之最优化研究现状

2024-06-14 12:32

本文主要是介绍压缩感知之最优化研究现状,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文链接:http://blog.sciencenet.cn/blog-497160-388963.html

Nyquist属于 local采样方式,其对应的信号重建算法是线性的; CS采用global的非自适应测量方式,从而大大减少数据采集量,然而其付出的代价是信号的重建算法的软件成本。因此,CS的最优化算法好坏直接影响到CS理论能否实用。

    区别于Nyquist理论的线性感知问题,CS理论的信号复原需要求解一个非线性优化问题。统计理论和组合优化理论告诉我们:通过选择合适的测量方式和重建算法,仅需要K+1次测量就可将N维空间的K-稀疏信号精确重建。众所周知:组合优化是一个NP问题,当N很大时,数值上无法有效实现,且抗噪声能力很差;然而,K+1测量是CS追求的目标。Candes, Tao和Donoho等人已证明,当测量矩阵满足RIP条件时,组合优化问题(或称,l0约束优化问题)转化为l1约束的凸优化问题,数值上容易处理的优化问题。目前已有的CS重建算法可以分为三类,第一类贪婪算法(Y. C. Pati ,  G. Davis, S. Mallat and Z. Zhang等人提出)(注意:贪婪算法是针对组合优化提出,为讨论方便,将且与凸优化问题列在一起),目前已发展了多种变形,例如,OMP, OOMP, CosMP,等。该类重建算法速度快(计算复杂性是O(N*K^2)), 然而需要的测量数据多(O(K*logN))且精度低。第二类方法是凸优化算法,代表性方法为LASSO, l1-Maggic, GPSR,等。该类算法速度慢(计算复杂性为N^3),然而需要的测量数据少(O(K*log(N/K)),且精度高。第三类方法是以Sparse Bayesian为代表的统计优化算法,该类方法位于前两者之间。另外,值得强调的是目前的CS理论均架设信号的稀疏度K是已知的,然而在许多情况下,K并不已知,那么建立动态的测量方式和相应的重建算法也是今后关键的问题。

综上所述:CS重建算法的目的是配合CS测量矩阵尽可能减少测量数据。因此所设计的最优化算法需要满足如下条件:

(a)需要最少的采集数据

(b)计算速度快

(c)普适

(d)能够解决大尺度问题

这篇关于压缩感知之最优化研究现状的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1060417

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

hdu1565(状态压缩)

本人第一道ac的状态压缩dp,这题的数据非常水,很容易过 题意:在n*n的矩阵中选数字使得不存在任意两个数字相邻,求最大值 解题思路: 一、因为在1<<20中有很多状态是无效的,所以第一步是选择有效状态,存到cnt[]数组中 二、dp[i][j]表示到第i行的状态cnt[j]所能得到的最大值,状态转移方程dp[i][j] = max(dp[i][j],dp[i-1][k]) ,其中k满足c

一种改进的red5集群方案的应用、基于Red5服务器集群负载均衡调度算法研究

转自: 一种改进的red5集群方案的应用: http://wenku.baidu.com/link?url=jYQ1wNwHVBqJ-5XCYq0PRligp6Y5q6BYXyISUsF56My8DP8dc9CZ4pZvpPz1abxJn8fojMrL0IyfmMHStpvkotqC1RWlRMGnzVL1X4IPOa_  基于Red5服务器集群负载均衡调度算法研究 http://ww

生信圆桌x生信分析平台:助力生物信息学研究的综合工具

介绍 少走弯路,高效分析;了解生信云,访问 【生信圆桌x生信专用云服务器】 : www.tebteb.cc 生物信息学的迅速发展催生了众多生信分析平台,这些平台通过集成各种生物信息学工具和算法,极大地简化了数据处理和分析流程,使研究人员能够更高效地从海量生物数据中提取有价值的信息。这些平台通常具备友好的用户界面和强大的计算能力,支持不同类型的生物数据分析,如基因组、转录组、蛋白质组等。

开题报告中的研究方法设计:AI能帮你做什么?

AIPaperGPT,论文写作神器~ https://www.aipapergpt.com/ 大家都准备开题报告了吗?研究方法部分是不是已经让你头疼到抓狂? 别急,这可是大多数人都会遇到的难题!尤其是研究方法设计这一块,选定性还是定量,怎么搞才能符合老师的要求? 每次到这儿,头脑一片空白。 好消息是,现在AI工具火得一塌糊涂,比如ChatGPT,居然能帮你在研究方法这块儿上出点主意。是不

研究人员在RSA大会上演示利用恶意JPEG图片入侵企业内网

安全研究人员Marcus Murray在正在旧金山举行的RSA大会上公布了一种利用恶意JPEG图片入侵企业网络内部Windows服务器的新方法。  攻击流程及漏洞分析 最近,安全专家兼渗透测试员Marcus Murray发现了一种利用恶意JPEG图片来攻击Windows服务器的新方法,利用该方法还可以在目标网络中进行特权提升。几天前,在旧金山举行的RSA大会上,该Marcus现场展示了攻击流程,

Science Robotics 首尔国立大学研究团队推出BBEX外骨骼,实现多维力量支持!

重复性举起物体可能会对脊柱和背部肌肉造成损伤,由此引发的腰椎损伤是工业环境等工作场所中一个普遍且令人关注的问题。为了减轻这类伤害,有研究人员已经研发出在举起任务中为工人提供辅助的背部支撑装置。然而,现有的这类装置通常无法在非对称性的举重过程中提供多维度的力量支持。此外,针对整个人体脊柱的设备安全性验证也一直是一个缺失的环节。 据探索前沿科技边界,传递前沿科技成果的X-robot投稿,来自首尔国立

通用内存快照裁剪压缩库Tailor介绍及源码分析(一)

背景 我们知道内存快照是治理 OOM 问题及其他类型的内存问题的重要数据源,内存快照中保存了进程虚拟机的完整的堆内存数据,很多时候也是调查其他类型异常的重要参考。但是dump出来的堆转储文件.hprof往往很大,以 LargeHeap 应用为例,其 OOM 时的内存快照大小通常在512M左右,要有效的存储和获取都是一个问题。 线下拿到hprof文件相对容易,也可以预防OOM,但覆盖的场景十分有

代码随想录训练营day37|52. 携带研究材料,518.零钱兑换II,377. 组合总和 Ⅳ,70. 爬楼梯

52. 携带研究材料 这是一个完全背包问题,就是每个物品可以无限放。 在一维滚动数组的时候规定了遍历顺序是要从后往前的,就是因为不能多次放物体。 所以这里能多次放物体只需要把遍历顺序改改就好了 # include<iostream># include<vector>using namespace std;int main(){int n,m;cin>>n>>m;std::vector<i

特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩

特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩 目录 前言 一、特征值分解 二、应用特征值分解对图片进行压缩 三、矩阵的奇异值分解 四、应用奇异值分解对图片进行压缩 五、MATLAB仿真代码 前言         学习了特征值分解和奇异值分解相关知识,发现其可以用于图片压缩,但网上没有找到相应代码,本文在学习了之后编写出了图片压缩的代码,发现奇异值分