F2FS源码分析-6.2 [其他重要数据结构以及函数] f2fs_journal的作用

2024-06-14 10:08

本文主要是介绍F2FS源码分析-6.2 [其他重要数据结构以及函数] f2fs_journal的作用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

F2FS源码分析系列文章
主目录
一、文件系统布局以及元数据结构
二、文件数据的存储以及读写
三、文件与目录的创建以及删除(未完成)
四、垃圾回收机制
五、数据恢复机制
六、重要数据结构或者函数的分析
  1. f2fs_summary的作用
  2. f2fs_journal的作用
  3. f2fs_map_block的作用
  4. get_dnode_of_data的作用
  5. get_node_page的作用(未完成)

F2FS Journal机制

Journal机制的介绍

当F2FS进行文件读写的时候,根据 f2fs_node 的设计以及闪存设备异地更新的特性,每修改一个数据块,都需要改动 f2fs_node 的地址映射,以及NAT,SIT等信息。但是如果仅仅因为一个小改动,例如修改一个块,就需要改动这么多数据,然后再写入磁盘,这样既会导致性能下降,也会导致闪存寿命的下降。

因此F2FS设计了journal机制,用于将这些对SIT和NAT区域的数据的修改暂存在Checkpoint区域的 f2fs_journal 中,这种设计可以减少NAT和SIT的更新产生的大量的I/O

产生大量I/O的原因是,sit和nat的值会随机更新,由于flash的机制,即使更新SIT/NAT其中的一个entry,都要将这个entry所在的整个NAT/SIT的block进行重写。如用户更新了多个node(segment),每一个node/segment的更改都要更新了其中一个entry,即f2fs_nat_entry(f2fs_sit_entry)。假设这些需要更新的entry都不在通过一个f2fs_nat_block(f2fs_sit_block),那么系统就要将所有的block更新,从而产生大量的4KB的I/O,即使只改动其中一个entry。

F2FS则是通过journal机制,将这些随机更新的f2fs_nat_entry(f2fs_sit_entry)都会尝试集中写到checkpoint区域的f2fs_journal当中,即把随机更新的NAT/SIT的block需要更新的entry都集中写到同一个block,从而减少I/O的写入。如果f2fs_journal的空间还没用尽,系统就会将更新的NAT/SIT entry写入journal中,如果这些journal用尽了,才回写到NAT/SIT区域当中。

Journal涉及到的数据结构

struct f2fs_journal {union {__le16 n_nats; /* 这个journal里面包含多少个nat_journal对象 */__le16 n_sits; /* 这个journal里面包含多少个sit_journal对象 */};/* spare area is used by NAT or SIT journals or extra info */union {struct nat_journal nat_j;struct sit_journal sit_j;struct f2fs_extra_info info;};
} __packed;

f2fs_journal 可以保存NAT的journal也可以保存SIT的journal,以下分别分析:

NAT Journal
每一个nat_journal都对应了一个node,记录了这个node是属于哪一个inode,以及这个node的在flash设备的物理地址。

struct nat_journal {struct nat_journal_entry entries[NAT_JOURNAL_ENTRIES];__u8 reserved[NAT_JOURNAL_RESERVED];
} __packed;struct nat_journal_entry {__le32 nid; /* 当前node的nid信息 */struct f2fs_nat_entry ne;
} __packed;struct f2fs_nat_entry {__u8 version;		/* latest version of cached nat entry */__le32 ino;		/* 属于哪一个inode */__le32 block_addr;	/* flash设备的物理地址 */
} __packed;

SIT Journal
每一个sit_journal都对应了一个segment,记录了该segment的有效block的数目 vblocks 以及 它的分配状态bitmap valid_map

struct sit_journal {struct sit_journal_entry entries[SIT_JOURNAL_ENTRIES];__u8 reserved[SIT_JOURNAL_RESERVED];
} __packed;struct sit_journal_entry {__le32 segno; /* 当前的segment number */struct f2fs_sit_entry se;
} __packed;struct f2fs_sit_entry {__le16 vblocks;				/* 有效block的数目 */__u8 valid_map[SIT_VBLOCK_MAP_SIZE]; /* SIT_VBLOCK_MAP_SIZE=64,64*8=512可以表示每一个块的valid状态 */__le64 mtime;				/* 用于GC的victim segment selection */
} __packed;

Journal机制的实现

前面提及Journal机制主要用于将频繁的NAT和SIT的更新集中写到checkpoint区域的f2fs_journal中,从而提高性能,延长闪存颗粒的寿命。去分析Journal机制如何实现时,首先我们需要分析,系统什么时候会读写NAT、SIT区域的数据:

NAT: 更新一个node的物理地址,获取一个node的物理地址
SIT: 分配segment中的block,回收segment中的block

对于node的物理地址的更新,以及segment中的block分配状态的更新,可以参考Checkpoint机制这一节的f2fs_flush_nat_entries函数以及f2fs_flush_sit_entries函数。

因此这里关注如何获取一个node的物理地址,以及一个segment的block分配状态。

通过Journal获取一个node的物理地址

F2FS一般是通过f2fs_get_node_info函数,根据传入的nid值,找到对应的物理地址。首先从内存中找一下nid有没有cache,如果没有则使用journal寻址,如果还是没有采取NAT找,最后找到之后将这个entry的信息,加入到cache中。

void f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,struct node_info *ni)
{struct f2fs_nm_info *nm_i = NM_I(sbi);struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);struct f2fs_journal *journal = curseg->journal;nid_t start_nid = START_NID(nid); // 计算这个nid所在的f2fs_nat_block的第一个nidstruct f2fs_nat_block *nat_blk;struct page *page = NULL;struct f2fs_nat_entry ne;struct nat_entry *e;pgoff_t index;int i;ni->nid = nid;/* 根据nid从cache寻找物理地址信息 */down_read(&nm_i->nat_tree_lock);e = __lookup_nat_cache(nm_i, nid);if (e) { // 如果有就返回ni->ino = nat_get_ino(e);ni->blk_addr = nat_get_blkaddr(e);ni->version = nat_get_version(e);up_read(&nm_i->nat_tree_lock);return;}memset(&ne, 0, sizeof(struct f2fs_nat_entry));/* 再去journal找 */down_read(&curseg->journal_rwsem);/* * 根据nid从journal找nat_entry的信息,如果 i>=0 ,* 则表示journal有这个信息,否则表示journal不存在这个nid的信息 * */i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);if (i >= 0) {ne = nat_in_journal(journal, i); // 将journal中的nat_entry返回出来node_info_from_raw_nat(ni, &ne); // 读到node_info中}up_read(&curseg->journal_rwsem);if (i >= 0) {up_read(&nm_i->nat_tree_lock);goto cache; // 在journal找到了,直接就返回}/** 如果journal都没有,就要从NAT读取* * 先根据这个nid计算一下所属的f2fs_nat_block的偏移,即物理地址* */index = current_nat_addr(sbi, nid);up_read(&nm_i->nat_tree_lock);/* 根据f2fs_nat_block偏移,将从磁盘读取出来 */page = f2fs_get_meta_page(sbi, index); /* 将数据转换为f2fs_nat_block的形式 */nat_blk = (struct f2fs_nat_block *)page_address(page);/* start_nid是这个nat_block的第一个nid,* 减去它就可以找出当前nid在nat_block内的偏移,然后都取出来 * */ne = nat_blk->entries[nid - start_nid];/* 根据读取出来的entry转为为ne的值,返回给调用函数 */node_info_from_raw_nat(ni, &ne);f2fs_put_page(page, 1);
cache:/* 如果cache不存在自然要缓存一下到内存中 */cache_nat_entry(sbi, nid, &ne); // 缓存这个node_entry
}

通过Journal获取一个segment的block分配状态

F2FS一般是通过get_seg_entry函数根据segment number(segno)获取对应的entry。由于segment的entry的数目比node entry少很多,所以F2FS将所有的segment的entry都读入了内存,参考Segment结构这一节。因此系统中读取segmeng entry的状态是简单的数组访问:

/* seg_entry是f2fs_sit_entry的内存结构,同样记录了vblock valid_bitmap等信息 */
static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,unsigned int segno)
{struct sit_info *sit_i = SIT_I(sbi); // 获取segment的内存管理结构return &sit_i->sentries[segno]; // 根据segno返回entry
}

这篇关于F2FS源码分析-6.2 [其他重要数据结构以及函数] f2fs_journal的作用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1060104

相关文章

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编

Java 继承和多态的作用及好处

《Java继承和多态的作用及好处》文章讲解Java继承与多态的概念、语法及应用,继承通过extends复用父类成员,减少冗余;多态实现方法重写与向上转型,提升灵活性与代码复用性,动态绑定降低圈复杂度... 目录1. 继承1.1 什么是继承1.2 继承的作用和好处1.3 继承的语法1.4 子类访问父类里面的成

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺