poj 1811 Prime Test(数论:大素数判定-分解)

2024-06-14 03:18

本文主要是介绍poj 1811 Prime Test(数论:大素数判定-分解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

直接套用Miller Rabin算法模板

代码如下:

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<time.h>
#include<iostream>
#include<algorithm>
#define LL long long
using namespace std;//****************************************************************
// Miller_Rabin 算法进行素数测试
//速度快,而且可以判断 <2^63的数
//****************************************************************
const int S=20;//随机算法判定次数,S越大,判错概率越小//计算 (a*b)%c.   a,b都是long long的数,直接相乘可能溢出的
//  a,b,c <2^63
LL mult_mod(LL a, LL b, LL c) {a %= c;b %= c;LL ret=0;while(b) {if(b&1) {ret += a;ret %= c;}a <<= 1;if(a >= c)a %= c;b >>= 1;}return ret;
}//计算  x^n %c
LL pow_mod(LL x, LL n, LL mod) {//x^n%cif(n==1)return x % mod;x %= mod;LL tmp=x;LL ret=1;while(n){if(n&1) ret=mult_mod(ret, tmp, mod);tmp = mult_mod(tmp, tmp, mod);n >>= 1;}return ret;
}//以a为基,n-1=x*2^t      a^(n-1)=1(mod n)  验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(LL a, LL n, LL x, LL t){LL ret = pow_mod(a,x,n);LL last = ret;for(int i=1; i<=t; i++) {ret = mult_mod(ret, ret, n);if(ret==1 && last!=1 && last!=n-1) return true;//合数last = ret;}if(ret != 1) return true;return false;
}// Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false;bool Miller_Rabin(LL n){if(n < 2)return false;if(n == 2)return true;if((n&1) == 0) return false;//偶数LL x = n-1;LL t = 0;while((x&1) == 0) {x >>= 1;t++;}for(int i=0; i<S; i++){LL a = rand()%(n-1)+1;//rand()需要stdlib.h头文件if(check(a, n, x, t))return false;//合数}return true;
}//************************************************
//pollard_rho 算法进行质因数分解
//************************************************
LL factor[100];//质因数分解结果(刚返回时是无序的)
int tol;//质因数的个数。数组小标从0开始LL gcd(LL a,LL b) {if(a==0)return 1;//???????if(a<0) return gcd(-a,b);while(b){long long t=a%b;a=b;b=t;}return a;
}long long Pollard_rho(LL x, LL c) {LL i = 1,k = 2;LL x0 = rand() % x;LL y = x0;while(true){i++;x0 = (mult_mod(x0, x0, x) + c) % x;LL d=gcd(y-x0, x);if(d!=1 && d!=x) return d;if(y == x0) return x;if(i == k) {y = x0;k += k;}}
}
//对n进行素因子分解
void findfac(LL n)
{if(Miller_Rabin(n)) {//素数factor[tol++] = n;return;}LL p = n;while(p >= n)p=Pollard_rho(p, rand()%(n-1)+1);findfac(p);findfac(n/p);
}int main(){//srand(time(NULL));//需要time.h头文件//POJ上G++不能加这句话LL n, x, ans;scanf("%lld", &n);for(int i=0; i<n; ++i) {scanf("%lld", &x);tol = 0;findfac(x);if(Miller_Rabin(x))puts("Prime");else {ans = factor[0];for(int j=1; j<tol; ++j) {ans = min(ans, factor[j]);}printf("%lld\n", ans);}}return 0;
}


这篇关于poj 1811 Prime Test(数论:大素数判定-分解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1059222

相关文章

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

poj 1511 Invitation Cards(spfa最短路)

题意是给你点与点之间的距离,求来回到点1的最短路中的边权和。 因为边很大,不能用原来的dijkstra什么的,所以用spfa来做。并且注意要用long long int 来存储。 稍微改了一下学长的模板。 stack stl 实现代码: #include<stdio.h>#include<stack>using namespace std;const int M

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

poj 1502 MPI Maelstrom(单源最短路dijkstra)

题目真是长得头疼,好多生词,给跪。 没啥好说的,英语大水逼。 借助字典尝试翻译了一下,水逼直译求不喷 Description: BIT他们的超级计算机最近交货了。(定语秀了一堆词汇那就省略吧再见) Valentine McKee的研究顾问Jack Swigert,要她来测试一下这个系统。 Valentine告诉Swigert:“因为阿波罗是一个分布式共享内存的机器,所以它的内存访问

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一