Python记忆组合透明度语言模型

2024-06-13 19:52

本文主要是介绍Python记忆组合透明度语言模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯浏览器语言推理识别神经网络 | 🎯不同语言秽语训练识别数据集 | 🎯交互式语言处理解释 Transformer 语言模型 | 🎯可视化Transformer 语言模型 | 🎯语言模型生成优质歌词 | 🎯模型不确定性和鲁棒性深度学习估计基准 | 🎯文本生成神经网络诗歌生成 | 🎯模型透明度 | 🎯验证揭示前馈Transformer 语言模型记忆组合 | 🎯可视化语言模型注意力 | 🎯Transformer语言模型文本解释器和视觉解释器 | 🎯分布式训练和推理模型 | 🎯知识获取模型 | 🎯信息提取模型 | 🎯文本生成模型 | 🎯语音图像视频模型

🍇Python注意力

注意力机制描述了神经网络中最近出现的一组新层,在过去几年中引起了广泛关注,尤其是在序列任务中。文献中对“注意力”有很多不同的定义,但我们在这里使用的定义如下:注意力机制描述了(序列)元素的加权平均值,其权重根据输入查询和元素的键动态计算。那么这到底是什么意思呢?目标是对多个元素的特征取平均值。但是,我们不希望对每个元素赋予相同的权重,而是希望根据它们的实际值赋予它们权重。换句话说,我们希望动态地决定我们更希望“关注”哪些输入。

💦缩放点积注意力

自注意力背后的核心概念是缩放点积注意力。我们的目标是建立一种注意力机制,序列中的任何元素都可以关注任何其他元素,同时仍能高效计算。点积注意力将一组查询 Q ∈ R T × d k Q \in R ^{T \times d_k} QRT×dk、键 K ∈ R T × d k K \in R ^{T \times d_k} KRT×dk 和值 V ∈ R T × d v V \in R ^{T \times d_v} VRT×dv 作为输入,其中 T T T 是序列长度, d k d_k dk d v d_v dv 分别是查询/键和值的隐藏维度。为了简单起见,我们现在忽略批量维度。从元素 i i i j j j的注意力值基于查询 Q i Q_i Qi和键 K j K_j Kj的相似度,使用点积作为相似度度量。在数学中,我们计算点积注意力如下:
注意力  ( Q , K , V ) = softmax ⁡ ( Q K T d k ) V \text { 注意力 }(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^T}{\sqrt{d_k}}\right) V  注意力 (Q,K,V)=softmax(dk QKT)V
其中 Q、K、V 是查询、键和值向量的串联。

矩阵乘法 Q K T Q K^T QKT 对每个可能的查询和键对执行点积,产生形状为 T × T T \times T T×T 的矩阵。每行代表特定元素 i i i​ 相对于序列中所有其他元素的注意力 logits。对此,我们应用 softmax 并与值向量相乘以获得加权平均值(权重由注意力决定)。这种注意力机制的另一个视角提供了如下所示的计算图。

我们尚未讨论的一方面是缩放因子 1 / d k 1 / \sqrt{d_k} 1/dk 。这个比例因子对于在初始化后保持注意力值的适当方差至关重要。请记住,我们初始化层的目的是使整个模型具有相等的方差,因此 Q Q Q K K K 的方差也可能接近 1 。然而,对方差为 σ 2 \sigma^2 σ2 的两个向量执行点积会产生方差为 d k d_k dk 倍的标量:
q i ∼ N ( 0 , σ 2 ) , k i ∼ N ( 0 , σ 2 ) → Var ⁡ ( ∑ i = 1 d k q i ⋅ k i ) = σ 4 ⋅ d k q_i \sim N \left(0, \sigma^2\right), k_i \sim N \left(0, \sigma^2\right) \rightarrow \operatorname{Var}\left(\sum_{i=1}^{d_k} q_i \cdot k_i\right)=\sigma^4 \cdot d_k qiN(0,σ2),kiN(0,σ2)Var(i=1dkqiki)=σ4dk
如果我们不将方差缩小到 ∼ σ 2 \sim \sigma^2 σ2,则 logits 上的 softmax 对于一个随机元素将饱和为 1,对于所有其他元素则饱和为 0。通过 softmax 的梯度将接近于零,因此我们无法正确地学习参数。请注意, σ 2 \sigma^2 σ2 的额外因子,即用 σ 4 \sigma^4 σ4 而不是 σ 2 \sigma^2 σ2,通常不是问题,因为我们保持原始方差 σ 2 \sigma^2 σ2 接近无论如何,到1。

上图中的块 Mask (opt.) 表示对注意力矩阵中的特定条目进行可选屏蔽。例如,如果我们将具有不同长度的多个序列堆叠成一个批次,就会使用此功能。为了仍然受益于 PyTorch 中的并行化,我们将句子填充到相同的长度,并在计算注意力值时屏蔽填充标记。这通常是通过将相应的注意力逻辑设置为非常低的值来实现的。

在讨论了缩放点积注意力块的细节之后,我们可以在下面编写一个函数,在给定查询、键和值三元组的情况下计算输出特征:

def scaled_dot_product(q, k, v, mask=None):d_k = q.size()[-1]attn_logits = torch.matmul(q, k.transpose(-2, -1))attn_logits = attn_logits / math.sqrt(d_k)if mask is not None:attn_logits = attn_logits.masked_fill(mask == 0, -9e15)attention = F.softmax(attn_logits, dim=-1)values = torch.matmul(attention, v)return values, attention

请注意,上面的代码支持序列长度前面的任何附加维度,因此我们也可以将其用于批处理。但是,为了更好地理解,让我们生成一些随机查询、键和值向量,并计算注意力输出:

seq_len, d_k = 3, 2
pl.seed_everything(42)
q = torch.randn(seq_len, d_k)
k = torch.randn(seq_len, d_k)
v = torch.randn(seq_len, d_k)
values, attention = scaled_dot_product(q, k, v)
print("Q\n", q)
print("K\n", k)
print("V\n", v)
print("Values\n", values)
print("Attention\n", attention)
Qtensor([[ 0.3367,  0.1288],[ 0.2345,  0.2303],[-1.1229, -0.1863]])
Ktensor([[ 2.2082, -0.6380],[ 0.4617,  0.2674],[ 0.5349,  0.8094]])
Vtensor([[ 1.1103, -1.6898],[-0.9890,  0.9580],[ 1.3221,  0.8172]])
Valuestensor([[ 0.5698, -0.1520],[ 0.5379, -0.0265],[ 0.2246,  0.5556]])
Attentiontensor([[0.4028, 0.2886, 0.3086],[0.3538, 0.3069, 0.3393],[0.1303, 0.4630, 0.4067]])

💦多头注意力

缩放点积注意力允许网络参与序列。然而,序列元素通常需要关注多个不同方面,并且单个加权平均值并不是一个好的选择。这就是为什么我们将注意力机制扩展到多个头,即相同特征上的多个不同的查询键值三元组。具体来说,给定一个查询、键和值矩阵,我们将它们转换为 h h h 子查询、子键和子值,并独立地通过缩放的点积注意力。然后,我们连接头部并将它们与最终的权重矩阵组合起来。从数学上来说,我们可以将此操作表示为:
多头  ( Q , K , V ) = Concat ⁡ ( head  1 , … , head  h ) W O 其中 head  i = Attention  ( Q W i Q , K W i K , V W i V ) \begin{aligned} \text { 多头 }(Q, K, V) & =\operatorname{Concat}\left(\text { head }_1, \ldots, \text { head }_h\right) W^O \\ \text { 其中 head }_i & =\text { Attention }\left(Q W_i^Q, K W_i^K, V W_i^V\right) \end{aligned}  多头 (Q,K,V) 其中 head i=Concat( head 1,, head h)WO= Attention (QWiQ,KWiK,VWiV)
在没有任意查询、键和值向量作为输入的情况下,我们如何在神经网络中应用多头注意力层?查看批量大小, T T T 序列长度, d model  d_{\text {model }} dmodel  X X X 的隐藏维度)。连续的权重矩阵 W Q 、 W K W^Q、W^K WQWK W V W^V WV 可以将 X X X​ 转换为表示输入的查询、键和值的相应特征向量。使用这种方法,我们可以实现下面的多头注意力模块。

def expand_mask(mask):assert mask.ndim >= 2, "Mask must be at least 2-dimensional with seq_length x seq_length"if mask.ndim == 3:mask = mask.unsqueeze(1)while mask.ndim < 4:mask = mask.unsqueeze(0)return mask
class MultiheadAttention(nn.Module):def __init__(self, input_dim, embed_dim, num_heads):super().__init__()assert embed_dim % num_heads == 0, "Embedding dimension must be 0 modulo number of heads."self.embed_dim = embed_dimself.num_heads = num_headsself.head_dim = embed_dim // num_headsself.qkv_proj = nn.Linear(input_dim, 3*embed_dim)self.o_proj = nn.Linear(embed_dim, embed_dim)self._reset_parameters()def _reset_parameters(self):nn.init.xavier_uniform_(self.qkv_proj.weight)self.qkv_proj.bias.data.fill_(0)nn.init.xavier_uniform_(self.o_proj.weight)self.o_proj.bias.data.fill_(0)def forward(self, x, mask=None, return_attention=False):batch_size, seq_length, _ = x.size()if mask is not None:mask = expand_mask(mask)qkv = self.qkv_proj(x)qkv = qkv.reshape(batch_size, seq_length, self.num_heads, 3*self.head_dim)qkv = qkv.permute(0, 2, 1, 3) # [Batch, Head, SeqLen, Dims]q, k, v = qkv.chunk(3, dim=-1)values, attention = scaled_dot_product(q, k, v, mask=mask)values = values.permute(0, 2, 1, 3) # [Batch, SeqLen, Head, Dims]values = values.reshape(batch_size, seq_length, self.embed_dim)o = self.o_proj(values)if return_attention:return o, attentionelse:return o

👉参阅一:计算思维

👉参阅二:亚图跨际

这篇关于Python记忆组合透明度语言模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1058271

相关文章

C语言中联合体union的使用

本文编辑整理自: http://bbs.chinaunix.net/forum.php?mod=viewthread&tid=179471 一、前言 “联合体”(union)与“结构体”(struct)有一些相似之处。但两者有本质上的不同。在结构体中,各成员有各自的内存空间, 一个结构变量的总长度是各成员长度之和。而在“联合”中,各成员共享一段内存空间, 一个联合变量

一份LLM资源清单围观技术大佬的日常;手把手教你在美国搭建「百万卡」AI数据中心;为啥大模型做不好简单的数学计算? | ShowMeAI日报

👀日报&周刊合集 | 🎡ShowMeAI官网 | 🧡 点赞关注评论拜托啦! 1. 为啥大模型做不好简单的数学计算?从大模型高考数学成绩不及格说起 司南评测体系 OpenCompass 选取 7 个大模型 (6 个开源模型+ GPT-4o),组织参与了 2024 年高考「新课标I卷」的语文、数学、英语考试,然后由经验丰富的判卷老师评判得分。 结果如上图所

mysql索引四(组合索引)

单列索引,即一个索引只包含单个列,一个表可以有多个单列索引,但这不是组合索引;组合索引,即一个索引包含多个列。 因为有事,下面内容全部转自:https://www.cnblogs.com/farmer-cabbage/p/5793589.html 为了形象地对比单列索引和组合索引,为表添加多个字段:    CREATE TABLE mytable( ID INT NOT NULL, use

大语言模型(LLMs)能够进行推理和规划吗?

大语言模型(LLMs),基本上是经过强化训练的 n-gram 模型,它们在网络规模的语言语料库(实际上,可以说是我们文明的知识库)上进行了训练,展现出了一种超乎预期的语言行为,引发了我们的广泛关注。从训练和操作的角度来看,LLMs 可以被认为是一种巨大的、非真实的记忆库,相当于为我们所有人提供了一个外部的系统 1(见图 1)。然而,它们表面上的多功能性让许多研究者好奇,这些模型是否也能在通常需要系

Python 字符串占位

在Python中,可以使用字符串的格式化方法来实现字符串的占位。常见的方法有百分号操作符 % 以及 str.format() 方法 百分号操作符 % name = "张三"age = 20message = "我叫%s,今年%d岁。" % (name, age)print(message) # 我叫张三,今年20岁。 str.format() 方法 name = "张三"age

一道经典Python程序样例带你飞速掌握Python的字典和列表

Python中的列表(list)和字典(dict)是两种常用的数据结构,它们在数据组织和存储方面有很大的不同。 列表(List) 列表是Python中的一种有序集合,可以随时添加和删除其中的元素。列表中的元素可以是任何数据类型,包括数字、字符串、其他列表等。列表使用方括号[]表示,元素之间用逗号,分隔。 定义和使用 # 定义一个列表 fruits = ['apple', 'banana

Python应用开发——30天学习Streamlit Python包进行APP的构建(9)

st.area_chart 显示区域图。 这是围绕 st.altair_chart 的语法糖。主要区别在于该命令使用数据自身的列和指数来计算图表的 Altair 规格。因此,在许多 "只需绘制此图 "的情况下,该命令更易于使用,但可定制性较差。 如果 st.area_chart 无法正确猜测数据规格,请尝试使用 st.altair_chart 指定所需的图表。 Function signa

人工和AI大语言模型成本对比 ai语音模型

这里既有AI,又有生活大道理,无数渺小的思考填满了一生。 上一专题搭建了一套GMM-HMM系统,来识别连续0123456789的英文语音。 但若不是仅针对数字,而是所有普通词汇,可能达到十几万个词,解码过程将非常复杂,识别结果组合太多,识别结果不会理想。因此只有声学模型是完全不够的,需要引入语言模型来约束识别结果。让“今天天气很好”的概率高于“今天天汽很好”的概率,得到声学模型概率高,又符合表达

智能客服到个人助理,国内AI大模型如何改变我们的生活?

引言 随着人工智能(AI)技术的高速发展,AI大模型越来越多地出现在我们的日常生活和工作中。国内的AI大模型在过去几年里取得了显著的进展,不少独创的技术点和实际应用令人瞩目。 那么,国内的AI大模型有哪些独创的技术点?它们在实际应用中又有哪些出色表现呢?此外,普通人又该如何利用这些大模型提升工作和生活的质量和效率呢?本文将为你一一解析。 一、国内AI大模型的独创技术点 多模态学习 多

python实现最简单循环神经网络(RNNs)

Recurrent Neural Networks(RNNs) 的模型: 上图中红色部分是输入向量。文本、单词、数据都是输入,在网络里都以向量的形式进行表示。 绿色部分是隐藏向量。是加工处理过程。 蓝色部分是输出向量。 python代码表示如下: rnn = RNN()y = rnn.step(x) # x为输入向量,y为输出向量 RNNs神经网络由神经元组成, python