RK3568笔记三十二:PaddleSeg训练部署

2024-06-13 12:28

本文主要是介绍RK3568笔记三十二:PaddleSeg训练部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、环境

1、Autodl配置

PyTorch 1.7.0Python 3.8(ubuntu18.04)Cuda 11.0

2、所需环境需求

- OS: 64-bit
- Python 3(3.6/3.7/3.8/3.9/3.10),64-bit version
- pip/pip3(9.0.1+),64-bit version
- CUDA >= 10.2
- cuDNN >= 7.6
- PaddlePaddle (the version >= 2.4)

3、开发板:ATK-DLRK3568

二、搭建环境

1、创建环境

conda create -n paddleseg_env python=3.8

2、激活

source activate
conda activate paddleseg_env

3、安装PaddlePaddle

python -m pip install paddlepaddle-gpu==2.4.2.post112 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple

验证

>>> import paddle
>>> paddle.utils.run_check()# If the following prompt appears on the command line, the PaddlePaddle installation is successful.
# PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now.# Confirm PaddlePaddle version
>>> print(paddle.__version__)

在这里插入图片描述

4、安装PaddleSeg

1) 下载地址

PaddlePaddle/PaddleSeg at release/2.8 (github.com)

2)安装

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simplepip install -v -e .

5、测试

sh tests/install/check_predict.sh

在这里插入图片描述

三、训练

1、下载数据集

开源数据集:https://paddleseg.bj.bcebos.com/dataset/optic_disc_seg.zip

下载后把数据放到 data目录下,没有目录新创建一个

2、train

export CUDA_VISIBLE_DEVICES=0 # Linux上设置1张可用的卡python tools/train.py --config configs/quick_start/pp_liteseg_optic_disc_512x512_1k.yml --do_eval --use_vdl --save_interval 500 --save_dir output

上述训练命令解释:

  • --config指定配置文件。
  • --save_interval指定每训练特定轮数后,就进行一次模型保存或者评估(如果开启模型评估)。
  • --do_eval开启模型评估。具体而言,在训练save_interval指定的轮数后,会进行模型评估。
  • --use_vdl开启写入VisualDL日志信息,用于VisualDL可视化训练过程。
  • --save_dir指定模型和visualdl日志文件的保存根路径。

开始训练

在这里插入图片描述

训练的模型权重保存在output目录下,如下所示。总共训练1000轮,每500轮评估一次并保存模型信息,所以有iter_500iter_1000文件夹。评估精度最高的模型权重,保存在best_model文件夹。后续模型的评估、测试和导出,都是使用保存在best_model文件夹下精度最高的模型权重。

output├── iter_500          #表示在500步保存一次模型├── model.pdparams  #模型参数└── model.pdopt     #训练阶段的优化器参数├── iter_1000         #表示在1000步保存一次模型├── model.pdparams  #模型参数└── model.pdopt     #训练阶段的优化器参数└── best_model        #精度最高的模型权重└── model.pdparams  

train.py脚本输入参数的详细说明如下。

参数名用途是否必选项默认值
iters训练迭代次数配置文件中指定值
batch_size单卡batch size配置文件中指定值
learning_rate初始学习率配置文件中指定值
config配置文件-
save_dir模型和visualdl日志文件的保存根路径output
num_workers用于异步读取数据的进程数量, 大于等于1时开启子进程读取数据0
use_vdl是否开启visualdl记录训练数据
save_interval模型保存的间隔步数1000
do_eval是否在保存模型时启动评估, 启动时将会根据mIoU保存最佳模型至best_model
log_iters打印日志的间隔步数10
resume_model恢复训练模型路径,如:output/iter_1000None
keep_checkpoint_max最新模型保存个数5

3、模型评估

python tools/val.py \--config configs/quick_start/pp_liteseg_optic_disc_512x512_1k.yml \--model_path output/iter_1000/model.pdparams

在这里插入图片描述

4、模型预测

python tools/predict.py \--config configs/quick_start/pp_liteseg_optic_disc_512x512_1k.yml \--model_path output/iter_1000/model.pdparams \--image_path data/optic_disc_seg/JPEGImages/H0003.jpg \--save_dir output/result

在这里插入图片描述

5、导出预测模型

PaddleSeg训练好模型J是动态的,将模型导出为预测模型、使用预测库进行部署,可以实现更快的推理速度。

将训练出来的动态图模型转化成静态图预测模型

python tools/export.py \--config configs/quick_start/pp_liteseg_optic_disc_512x512_1k.yml \--model_path output/best_model/model.pdparams \--save_dir output/infer_model

在这里插入图片描述

四、模型导出

1、导出ONNX模型

pip install paddle2onnx
pip install tensorrt
pip install pycuda
pip install onnx
pip install protobuf==3.20.0
python deploy/python/infer_onnx_trt.py \--config <path to config> \--model_path <path to model> \--width <img_width> \--height <img_height> # 注意使用是转换后的静态图预测模型  
python deploy/python/infer_onnx_trt.py \--config configs/quick_start/pp_liteseg_optic_disc_512x512_1k.yml \--model_path output/infer_model/model.pdparams \--width 512 \--height 512 

在这里插入图片描述

虽然报错,但导出成功

2、RKNN导出

到处RKNN需要rknn环境,自行搭建

 python convert.py ../model/pp_liteseg_cityscapes.onnx rk3568

在这里插入图片描述

这篇关于RK3568笔记三十二:PaddleSeg训练部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1057301

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

k8s部署MongDB全过程

《k8s部署MongDB全过程》文章介绍了如何在Kubernetes集群中部署MongoDB,包括环境准备、创建Secret、创建服务和Deployment,并通过Robo3T工具测试连接... 目录一、环境准备1.1 环境说明1.2 创建 namespace1.3 创建mongdb账号/密码二、创建Sec

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

Python项目打包部署到服务器的实现

《Python项目打包部署到服务器的实现》本文主要介绍了PyCharm和Ubuntu服务器部署Python项目,包括打包、上传、安装和设置自启动服务的步骤,具有一定的参考价值,感兴趣的可以了解一下... 目录一、准备工作二、项目打包三、部署到服务器四、设置服务自启动一、准备工作开发环境:本文以PyChar

centos7基于keepalived+nginx部署k8s1.26.0高可用集群

《centos7基于keepalived+nginx部署k8s1.26.0高可用集群》Kubernetes是一个开源的容器编排平台,用于自动化地部署、扩展和管理容器化应用程序,在生产环境中,为了确保集... 目录一、初始化(所有节点都执行)二、安装containerd(所有节点都执行)三、安装docker-

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Jenkins中自动化部署Spring Boot项目的全过程

《Jenkins中自动化部署SpringBoot项目的全过程》:本文主要介绍如何使用Jenkins从Git仓库拉取SpringBoot项目并进行自动化部署,通过配置Jenkins任务,实现项目的... 目录准备工作启动 Jenkins配置 Jenkins创建及配置任务源码管理构建触发器构建构建后操作构建任务

若依部署Nginx和Tomcat全过程

《若依部署Nginx和Tomcat全过程》文章总结了两种部署方法:Nginx部署和Tomcat部署,Nginx部署包括打包、将dist文件拉到指定目录、配置nginx.conf等步骤,Tomcat部署... 目录Nginx部署后端部署Tomcat部署出现问题:点击刷新404总结Nginx部署第一步:打包

Nginx、Tomcat等项目部署问题以及解决流程

《Nginx、Tomcat等项目部署问题以及解决流程》本文总结了项目部署中常见的four类问题及其解决方法:Nginx未按预期显示结果、端口未开启、日志分析的重要性以及开发环境与生产环境运行结果不一致... 目录前言1. Nginx部署后未按预期显示结果1.1 查看Nginx的启动情况1.2 解决启动失败的