RK3568笔记三十二:PaddleSeg训练部署

2024-06-13 12:28

本文主要是介绍RK3568笔记三十二:PaddleSeg训练部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、环境

1、Autodl配置

PyTorch 1.7.0Python 3.8(ubuntu18.04)Cuda 11.0

2、所需环境需求

- OS: 64-bit
- Python 3(3.6/3.7/3.8/3.9/3.10),64-bit version
- pip/pip3(9.0.1+),64-bit version
- CUDA >= 10.2
- cuDNN >= 7.6
- PaddlePaddle (the version >= 2.4)

3、开发板:ATK-DLRK3568

二、搭建环境

1、创建环境

conda create -n paddleseg_env python=3.8

2、激活

source activate
conda activate paddleseg_env

3、安装PaddlePaddle

python -m pip install paddlepaddle-gpu==2.4.2.post112 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple

验证

>>> import paddle
>>> paddle.utils.run_check()# If the following prompt appears on the command line, the PaddlePaddle installation is successful.
# PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now.# Confirm PaddlePaddle version
>>> print(paddle.__version__)

在这里插入图片描述

4、安装PaddleSeg

1) 下载地址

PaddlePaddle/PaddleSeg at release/2.8 (github.com)

2)安装

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simplepip install -v -e .

5、测试

sh tests/install/check_predict.sh

在这里插入图片描述

三、训练

1、下载数据集

开源数据集:https://paddleseg.bj.bcebos.com/dataset/optic_disc_seg.zip

下载后把数据放到 data目录下,没有目录新创建一个

2、train

export CUDA_VISIBLE_DEVICES=0 # Linux上设置1张可用的卡python tools/train.py --config configs/quick_start/pp_liteseg_optic_disc_512x512_1k.yml --do_eval --use_vdl --save_interval 500 --save_dir output

上述训练命令解释:

  • --config指定配置文件。
  • --save_interval指定每训练特定轮数后,就进行一次模型保存或者评估(如果开启模型评估)。
  • --do_eval开启模型评估。具体而言,在训练save_interval指定的轮数后,会进行模型评估。
  • --use_vdl开启写入VisualDL日志信息,用于VisualDL可视化训练过程。
  • --save_dir指定模型和visualdl日志文件的保存根路径。

开始训练

在这里插入图片描述

训练的模型权重保存在output目录下,如下所示。总共训练1000轮,每500轮评估一次并保存模型信息,所以有iter_500iter_1000文件夹。评估精度最高的模型权重,保存在best_model文件夹。后续模型的评估、测试和导出,都是使用保存在best_model文件夹下精度最高的模型权重。

output├── iter_500          #表示在500步保存一次模型├── model.pdparams  #模型参数└── model.pdopt     #训练阶段的优化器参数├── iter_1000         #表示在1000步保存一次模型├── model.pdparams  #模型参数└── model.pdopt     #训练阶段的优化器参数└── best_model        #精度最高的模型权重└── model.pdparams  

train.py脚本输入参数的详细说明如下。

参数名用途是否必选项默认值
iters训练迭代次数配置文件中指定值
batch_size单卡batch size配置文件中指定值
learning_rate初始学习率配置文件中指定值
config配置文件-
save_dir模型和visualdl日志文件的保存根路径output
num_workers用于异步读取数据的进程数量, 大于等于1时开启子进程读取数据0
use_vdl是否开启visualdl记录训练数据
save_interval模型保存的间隔步数1000
do_eval是否在保存模型时启动评估, 启动时将会根据mIoU保存最佳模型至best_model
log_iters打印日志的间隔步数10
resume_model恢复训练模型路径,如:output/iter_1000None
keep_checkpoint_max最新模型保存个数5

3、模型评估

python tools/val.py \--config configs/quick_start/pp_liteseg_optic_disc_512x512_1k.yml \--model_path output/iter_1000/model.pdparams

在这里插入图片描述

4、模型预测

python tools/predict.py \--config configs/quick_start/pp_liteseg_optic_disc_512x512_1k.yml \--model_path output/iter_1000/model.pdparams \--image_path data/optic_disc_seg/JPEGImages/H0003.jpg \--save_dir output/result

在这里插入图片描述

5、导出预测模型

PaddleSeg训练好模型J是动态的,将模型导出为预测模型、使用预测库进行部署,可以实现更快的推理速度。

将训练出来的动态图模型转化成静态图预测模型

python tools/export.py \--config configs/quick_start/pp_liteseg_optic_disc_512x512_1k.yml \--model_path output/best_model/model.pdparams \--save_dir output/infer_model

在这里插入图片描述

四、模型导出

1、导出ONNX模型

pip install paddle2onnx
pip install tensorrt
pip install pycuda
pip install onnx
pip install protobuf==3.20.0
python deploy/python/infer_onnx_trt.py \--config <path to config> \--model_path <path to model> \--width <img_width> \--height <img_height> # 注意使用是转换后的静态图预测模型  
python deploy/python/infer_onnx_trt.py \--config configs/quick_start/pp_liteseg_optic_disc_512x512_1k.yml \--model_path output/infer_model/model.pdparams \--width 512 \--height 512 

在这里插入图片描述

虽然报错,但导出成功

2、RKNN导出

到处RKNN需要rknn环境,自行搭建

 python convert.py ../model/pp_liteseg_cityscapes.onnx rk3568

在这里插入图片描述

这篇关于RK3568笔记三十二:PaddleSeg训练部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1057301

相关文章

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓