斜率优化详解

2024-06-13 11:36
文章标签 详解 优化 斜率

本文主要是介绍斜率优化详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

斜率优化

[HNOI2008] 玩具装箱

状态转移方程:
f i = m i n ( f i , f j + ( s u m i + i − s u m j − j − L ) 2 ) i > j f_i=min(f_i,f_j+(sum_i+i-sum_j-j-L)^2){i>j} fi=min(fi,fj+(sumi+isumjjL)2)i>j
设A为 s u m i + i sum_i+i sumi+i,B为 s u m j + j + L + 1 sum_j+j+L+1 sumj+j+L+1

简化可得:
f i = m i n ( f i , f j + A 2 − 2 A B + B 2 ) f_i=min(f_i,f_j+A^2-2AB+B^2) fi=min(fi,fj+A22AB+B2)
稍微分解一下,有:
f i = f j + A 2 − 2 A B + B 2 f j + B 2 = 2 A B + f i − A 2 f_i=f_j+A^2-2AB+B^2 \\ f_j+B^2=2AB+f_i-A^2 fi=fj+A22AB+B2fj+B2=2AB+fiA2
f j + B 2 f_j+B^2 fj+B2 为点 y y y 2 A 2A 2A k k k B B B x x x f i − A 2 f_i-A^2 fiA2 b b b

考虑一个确定的点 ( B , f j + B 2 ) (B,f_j+B^2) (B,fj+B2) k = 2 A k=2A k=2A​ 的最小截距。

对于每个确定的 i i i,可令斜率为 h i h_i hi 的直线过每个决策点,都可求得一个截距。根据状态转移方程可知,其中截距最小的直线方程所经过的决策点即为左右决策。

斜率:

先看一张图:

  • 斜率(↑↑↑)

斜率就是坡度,是高度的平均变化率,用坡度来刻划道路的倾斜程度,也就是用坡面的切直高度和水平长度的比,相当于在水平方向移动一千米,在切直方向上升或下降的数值,这个比值实际上就表示了坡度的大小。

即:设 ( 0 , 0 ) (0,0) (0,0) 点为 a a a ( 3 , 0 ) (3,0) (3,0) 点为 b b b,则点 B B B 的斜率为 ∣ b − a ∣ B − b \frac{|b-a|}{B-b} Bbba​。

以下称 x j x_j xj x x x 轴的 j j j 点, y i y_i yi 为在 y y y 轴的 i i i 点。

在绝v额集合中筛选出部分决策,使得在 x j x_j xj 递增的顺序下,相邻的决策点所炼成的线段的斜率单调递增。对于任意连续的三个所选决策 j i − 1 , j i , j i + 1 j_{i-1},j_{i},j_{i+1} ji1,ji,ji+1,都有:
f j i − f j i − 1 x j i − x j i − 1 < f j i + 1 − f j i f j i + 1 − f j i \frac{f_{j_{i}}-f_{j_{i-1}}}{x_{j_i}-x_{j_{i-1}}}<\frac{f_{j_{i+1}}-f_{j_{i}}}{f_{j_{i+1}}-f_{j_i}} xjixji1fjifji1<fji+1fjifji+1fji
在对应坐标系中,相邻点之间连成的线段呈现出“下凸”形态,即为“凸包”。

  • 凸包(↑↑↑)

若斜率函数 h i h_i hi x j x_j xj 均为单调递增函数,随着 j j j 的递增,决策点的横坐标也单调递增,新决策必定会出现在整个凸包的最右端。又因为斜率函数具有单调性,所以每次需要求解的直线斜率 h i h_i hi 也单调递增。决策集合仅保留下凸曲线上相邻现代斜率大于 h i h_i hi 的剩余决策点,所以曲线最左端的决策点即为最优决策。

  • 最优决策、最优斜率、截距(设B点为最佳决策点)

根据如上性质,我们不难想出,用双端队列 q[l~r] 维护下凸曲线,队列中保存部分决策,对应下凸曲线上的决策点,满足 x i x_i xi​ 和 h i h_i hi​​ 都递增。

具体实施方案:
  • 为了保证队头即为最优决策,仅需保留下凸曲线上斜率大于 h i h_i hi 的点,从队头开始检查决策 q l q_l ql 和后续决策 q l + 1 q_{l+1} ql+1 对应点连接线的斜率。若该斜率小等于 h i h_i hi,则把 q l q_l ql 出队,继续检查寻得队头和后续决策,直至线段斜率大于 h i h_i hi
  • 直接取队头决策 j = q l j=q_l j=ql 为最优决策,进行状态转移。
  • 将当前状态 i i i 为新的决策从队尾插入。在插入前需要维护凸曲线性质,即三个决策点 q r − 1 , q r , i q_{r-1},q_r,i qr1,qr,i 对应的相邻线段需要满足斜率单调递增,否则吧决策 q r q_r qr 出队,继续检查 q r − 2 , q r − 1 , i q_{r-2},q_{r-1},i qr2,qr1,i,直至满足要求。设此操作一共进行了 n n n 轮,则最终需要判断的三个状态为 q r − n , q r − n + 1 , i q_{r-n},q_{r-n+1},i qrn,qrn+1,i

时间复杂度: O ( N ) O(N) O(N)

  • 若斜率函数 h i h_i hi 不满足单调性,则 x j x_j xj 为单调递增函数,队头不为最优决策,须保留整个下凸曲线,可在队列中二分查找,求出一个位置 k k k,使得:

∀ p < k ∀ q > k h p < h k < h q \forall\ p\ <\ k \\ \forall\ q\ >\ k \\ h_p<h_k<h_q  p < k q > khp<hk<hq

若满足以上条件,则 k k k 为最优决策。

时间复杂度: O ( n log ⁡ n ) O(n \log n) O(nlogn)

AC Code:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n,l;
const ll MAXN=5e4+5;
ll q[MAXN],sum[MAXN],f[MAXN];
ll head=1,tail=1;
ll j;
inline ll x(ll j)//x坐标 
{return sum[j];
}
inline ll y(ll j)//y坐标 
{return f[j]+(sum[j]+l)*(sum[j]+l);
}
inline double slope(ll i,ll j)//计算 
{return (double)(y(j)-y(i))/(x(j)-x(i));
}
inline ll compute(ll i,ll j)//代价公式 
{return (sum[i]-sum[j]-l)*(sum[i]-sum[j]-l);
}
int main(){scanf("%lld%lld",&n,&l);l++;//因为一直都是-l-1,干脆直接变为 -(l+1) for(ll i=1;i<=n;i++){scanf("%lld",&sum[i]);sum[i]+=sum[i-1]+1;//前缀和 }q[tail]=0;for(ll i=1;i<=n;i++)//dp{while(head<tail&&slope(q[head],q[head+1])<=(sum[i]<<1))//出队首条件 head++;j=q[head];//队首 f[i]=f[j]+compute(i,j);//计算 while(head<tail&&slope(q[tail-1],q[tail])>=slope(q[tail-1],i))//出队末条件 tail--;q[++tail]=i;//最优决策入队 }printf("%lld\n",f[n]);return 0;
}

这篇关于斜率优化详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1057192

相关文章

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.