【人脸检测】DBface_small深度剖析

2024-06-13 09:08

本文主要是介绍【人脸检测】DBface_small深度剖析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要: 基于高斯热力图的目标检测是anchor free中的代表方法,其具有原理简单,易于拓展,后处理简单等优势。

1. 简介

采用热力图做人脸检测,最开始是Centernet的出现,其在通用通用目标检测,人体关键点检测,3D目标检测上都达到了std的效果。后来就出现了centerface,采用mobilev2做bonenet,做人脸与关键点检测。但,项目只给出了推理代码,没有给出训练代码。后面我借鉴Centernet项目,复现了一个版本:CenterFace.pytorch,但,训练结果没法达到原文的最好效果。且代码是用的Centernet,所以可读性较差。

今年,出现了DBface,和dbface_small,其中dbface_small只有1.4M也能和retinaface_small一样的精度。同时,项目重构的代码,结构清晰,也便于理解和阅读。

2. 网络模型结构

2.1 神经网络部分

直接上图(PPT画的,😂😂😂)
在这里插入图片描述

  • Block
    就是一个残差模块

  • ResSE
    在每个残差模块的shortcut前,增加一个SE模块

  • FPN中的UP(借用原作者的经验)
    双线性插值Bilinear+Conv+BN+Activation的上采样模块,优于用反卷积、最近邻插值等,所以比较推荐,但是不同框架对这个的支持不一样,造成使用困难

  • SSH
    在输出加了一个SSH模块,增强特征

  • 输出
    有三个分支,分别对应人脸box中心点的高斯热力图,人脸box,人脸关键点landmark

2.2 模型原理部分

  • hm loss
    人脸box中心点hm的尺寸为:200*200,hm_target也是200 * 200 ,采用focal loss作为损失函数。hm_target == 1表示正样本,hm_target < 1的表示负样本。所以一个目标用anchor的理念,就只有一个anchor。

    • 引入pos_weight,改善大目标检测
      CenterNet AnchorFree的特性是所有目标都一个点,正类贡献无论目标尺寸大小都一样,Anchor Base的特性是目标越大正类loss贡献越大,也正因此,大目标在CenterNet上训练效果总是不好,解决大目标不行,本项目提倡增加pos_weights来处理,并且增加大目标的权重,实验证明有良好的提升大目标效果
  • box loss——giou loss
    box输出为200 * 200 * 4。在Centernet项目中是预测的w,h,采用的是L1loss。DBface中人脸box采用的是[x1, y1, x2, y2]左上,右下,相对box中心的偏差,并用giou loss。

  • landmark loss
    landmark输出为200 * 200 * 10。其也是相对于box中心点的偏差。人脸关键点采用WingLoss

Reference

  1. Centernet
  2. centerface
  3. CenterFace.pytorch
  4. DBface

这篇关于【人脸检测】DBface_small深度剖析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056874

相关文章

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

韦季李输入法_输入法和鼠标的深度融合

在数字化输入的新纪元,传统键盘输入方式正悄然进化。以往,面对实体键盘,我们常需目光游离于屏幕与键盘之间,以确认指尖下的精准位置。而屏幕键盘虽直观可见,却常因占据屏幕空间,迫使我们在操作与视野间做出妥协,频繁调整布局以兼顾输入与界面浏览。 幸而,韦季李输入法的横空出世,彻底颠覆了这一现状。它不仅对输入界面进行了革命性的重构,更巧妙地将鼠标这一传统外设融入其中,开创了一种前所未有的交互体验。 想象

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

免费也能高质量!2024年免费录屏软件深度对比评测

我公司因为客户覆盖面广的原因经常会开远程会议,有时候说的内容比较广需要引用多份的数据,我记录起来有一定难度,所以一般都用录屏工具来记录会议内容。这次我们来一起探索有什么免费录屏工具可以提高我们的工作效率吧。 1.福晰录屏大师 链接直达:https://www.foxitsoftware.cn/REC/  录屏软件录屏功能就是本职,这款录屏工具在录屏模式上提供了多种选项,可以选择屏幕录制、窗口

动手学深度学习【数据操作+数据预处理】

import osos.makedirs(os.path.join('.', 'data'), exist_ok=True)data_file = os.path.join('.', 'data', 'house_tiny.csv')with open(data_file, 'w') as f:f.write('NumRooms,Alley,Price\n') # 列名f.write('NA

深度优先(DFS)和广度优先(BFS)——算法

深度优先 深度优先搜索算法(英语:Depth-First-Search,DFS)是一种用于遍历或搜索树或图的算法。 沿着树的深度遍历树的节点,尽可能深的搜索树的分支,当节点v的所在边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访

图解TCP三次握手|深度解析|为什么是三次

写在前面 这篇文章我们来讲解析 TCP三次握手。 TCP 报文段 传输控制块TCB:存储了每一个连接中的一些重要信息。比如TCP连接表,指向发送和接收缓冲的指针,指向重传队列的指针,当前的发送和接收序列等等。 我们再来看一下TCP报文段的组成结构 TCP 三次握手 过程 假设有一台客户端,B有一台服务器。最初两端的TCP进程都是处于CLOSED关闭状态,客户端A打开链接,服务器端