【ncnn android】算法移植(七)——pytorch2onnx代码粗看

2024-06-13 09:08

本文主要是介绍【ncnn android】算法移植(七)——pytorch2onnx代码粗看,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目的:

  • 了解torch2onnx的流程
  • 了解其中的一些技术细节

1. 程序细节

  1. get_graph
    将pytorch的模型转成onnx需要的graph
  • graph, torch_out = _trace_and_get_graph_from_model(model, args, training)

  • trace, torch_out, inputs_states = torch.jit.get_trace_graph(model, args, _force_outplace=True, _return_inputs_states=True) warn_on_static_input_change(inputs_states)

  1. graph_export_onnx
proto, export_map = graph._export_onnx(params_dict, opset_version, dynamic_axes, defer_weight_export,operator_export_type, strip_doc_string, val_keep_init_as_ip)

2. 其他

  1. batchnorm
    在保存成onnx的时候,设置verbose=True,可以看有哪些属性。
%554 : Float(1, 16, 8, 8) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%550, %model.detect.context.inconv.conv.weight), scope: OnnxModel/DBFace[model]/DetectModule[detect]/ContextModule[context]/CBAModule[inconv]/Conv2d[conv] # /home/yangna/yangna/tool/anaconda2/envs/torch130/lib/python3.6/site-packages/torch/nn/modules/conv.py:342:0%555 : Float(1, 16, 8, 8) = onnx::BatchNormalization[epsilon=1e-05, momentum=0.9](%554, %model.detect.context.inconv.bn.weight, %model.detect.context.inconv.bn.bias, %model.detect.context.inconv.bn.running_mean, %model.detect.context.inconv.bn.running_var), scope: OnnxModel/DBFace[model]/DetectModule[detect]/ContextModule[context]/CBAModule[inconv]/BatchNorm2d[bn] # /home/yangna/yangna/tool/anaconda2/envs/torch130/lib/python3.6/site-packages/torch/nn/functional.py:1670:0%556 : Float(1, 16, 8, 8) = onnx::Relu(%555), scope: OnnxModel/DBFace[model]/DetectModule[detect]/ContextModule[context]/CBAModule[inconv]/ReLU[act] # /home/yangna/yangna/tool/anaconda2/envs/torch130/lib/python3.6/site-packages/torch/nn/functional.py:912:0%557 : Float(1, 16, 8, 8) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%556, %model.detect.context.upconv.conv.weight), scope: OnnxModel/DBFace[model]/DetectModule[detect]/ContextModule[context]/CBAModule[upconv]/Conv2d[conv] # /home/yangna/yangna/tool/anaconda2/envs/torch130/lib/python3.6/site-packages/torch/nn/modules/conv.py:342:0%558 : Float(1, 16, 8, 8) = onnx::BatchNormalization[epsilon=1e-05, momentum=0.9](%557, %model.detect.context.upconv.bn.weight, %model.detect.context.upconv.bn.bias, %model.detect.context.upconv.bn.running_mean, %model.detect.context.upconv.bn.running_var), scope: OnnxModel/DBFace[model]/DetectModule[detect]/ContextModule[context]/CBAModule[upconv]/BatchNorm2d[bn] # /home/yangna/yangna/tool/anaconda2/envs/torch130/lib/python3.6/site-packages/torch/nn/functional.py:1670:0%559 : Float(1, 16, 8, 8) = onnx::Relu(%558), scope: OnnxModel/DBFace[model]/DetectModule[detect]/ContextModule[context]/CBAModule[upconv]/ReLU[act] # /home/yangna/yangna/tool/anaconda2/envs/torch130/lib/python3.6/site-packages/torch/nn/functional.py:912:0

这里以batchnorm为例,说明一下:

  • 首先是pytorch中的:
    %558 : Float(1, 16, 8, 8) = onnx::BatchNormalization[epsilon=1e-05, momentum=0.9](%557, %model.detect.context.upconv.bn.weight, %model.detect.context.upconv.bn.bias, %model.detect.context.upconv.bn.running_mean, %model.detect.context.upconv.bn.running_var), scope: OnnxModel/DBFace[model]/DetectModule[detect]/ContextModule[context]/CBAModule[upconv]/BatchNorm2d[bn] # /home/yangna/yangna/tool/anaconda2/envs/torch130/lib/python3.6/site-packages/torch/nn/functional.py:1670:0
    其中小括号中就是要保存的参数的属性有:bn.weight bn.bias bn.running_mean bn.running_var

  • ncnn中onnx2ncnn中如何读取预训练权重。

const onnx::TensorProto& scale = weights[node.input(1)];
const onnx::TensorProto& B = weights[node.input(2)];
const onnx::TensorProto& mean = weights[node.input(3)];
const onnx::TensorProto& var = weights[node.input(4)];
  • node.input(1):bn.weight
  • node.input(2):bn.bias
  • node.input(3):bn.running_mean
  • node.input(4):bn.running_var
    顺序和pytorch2onnx写入的顺序一致
  1. maxpool
  • pytorch的打印信息
%pool_hm : Float(1, 1, 8, 8) = onnx::MaxPool[ceil_mode=0, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1]](%hm), scope: OnnxModel # /home/yangna/yangna/tool/anaconda2/envs/torch130/lib/python3.6/site-packages/torch/nn/functional.py:488:0
  • ncnn中如何读取结构参数
    因为maxpool层是没有预训练权重的,只有一些结构参数
std::string auto_pad = get_node_attr_s(node, "auto_pad");//TODO
std::vector<int> kernel_shape = get_node_attr_ai(node, "kernel_shape");
std::vector<int> strides = get_node_attr_ai(node, "strides");
std::vector<int> pads = get_node_attr_ai(node, "pads");
  • 注意:这里“auto_pad”字段和pytorch中的“ceil_model”字段是不一样的。这是因为pytorch2onnx版本和ncnn版本不对应造成的。可能ncnn20180704版时,maxpool的onnx表达中有“auto_pad”属性。

这篇关于【ncnn android】算法移植(七)——pytorch2onnx代码粗看的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056868

相关文章

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

CSS自定义浏览器滚动条样式完整代码

《CSS自定义浏览器滚动条样式完整代码》:本文主要介绍了如何使用CSS自定义浏览器滚动条的样式,包括隐藏滚动条的角落、设置滚动条的基本样式、轨道样式和滑块样式,并提供了完整的CSS代码示例,通过这些技巧,你可以为你的网站添加个性化的滚动条样式,从而提升用户体验,详细内容请阅读本文,希望能对你有所帮助...

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下

Git提交代码详细流程及问题总结

《Git提交代码详细流程及问题总结》:本文主要介绍Git的三大分区,分别是工作区、暂存区和版本库,并详细描述了提交、推送、拉取代码和合并分支的流程,文中通过代码介绍的非常详解,需要的朋友可以参考下... 目录1.git 三大分区2.Git提交、推送、拉取代码、合并分支详细流程3.问题总结4.git push

Android kotlin语言实现删除文件的解决方案

《Androidkotlin语言实现删除文件的解决方案》:本文主要介绍Androidkotlin语言实现删除文件的解决方案,在项目开发过程中,尤其是需要跨平台协作的项目,那么删除用户指定的文件的... 目录一、前言二、适用环境三、模板内容1.权限申请2.Activity中的模板一、前言在项目开发过程中,尤