【语义分割】——多层特征的融合

2024-06-13 08:48

本文主要是介绍【语义分割】——多层特征的融合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
转载自:语义分割-多层特征融合
尊重原创,请读原文

语义分割,也称为像素级分类问题,其输出和输入分辨率相同(如题图中,左边为2048x1024分辨率的Cityscapes街景图像,输入模型,得到右边同样分辨率的语义图)。由此,语义分割具有两大需求,即高分辨率和高层语义,而这两个需求和卷积网络设计是矛盾的。

卷积网络从输入到输出,会经过多个下采样层(一般为5个,输出原图1/32的特征图),从而逐步扩大视野获取高层语义特征,高层语义特征靠近输出端但分辨率低,高分率特征靠近输入端但语义层次低。高层特征和底层特征都有各自的弱点,各自的分割问题如图1所示,第二行高层特征的分割结果保持了大的语义结构,但小结构丢失严重;第三行低层特征的分割结果保留了丰富的细节,但语义类别预测的很差。

一个自然的想法就是融合高低层特征,取长补短,分割经典工作FCN和U-Net均采用了这个策略,物体检测中常用的特征金字塔网络(FPN)也是采用了该策略。为下文需要,先介绍两类融合策略,一类是FPN,先自下而上获取高层语义特征,再通过自上而下逐步上采样高层语义特征,并融合对应分辨率的下层特征;另一类是HRNet,自下而上包含多个分辨率通路,不同分辨率特征在自下而上过程中及时进行融合。

在这里插入图片描述

在这里插入图片描述
可能问题:
待融合的低分辨率高层特征一般通过双线性插值到低层特征的相同分辨率,然后通过相加或沿通道维拼接的方式进行融合。这里引入了两个问题,1.是否每个位置的高低层特征都是同等有效;2.高低层特征空间上存在对不齐的问题,简单上采样无法解决。

对问题1,我们提出了GFF,借鉴LSTM中的Gate机制,在不同位置给高低层特征根据有效性,给予不同的加权。
在这里插入图片描述
对问题2,最近arXiv上先后放出了两篇工作[1, 2],都是借鉴光流(对齐不同帧图像)来对齐不同层特征。其中,Semantic Flow [1]是基于FPN的自上而下策略,AlignSeg [2]是基于HRNet的自下而上策略。

Semantic Flow实现非常简单,首先引入Flow Alignment Module (FAM,图5),然后改造FPN(图6)。该方法由于没有使用常用的高层用带孔卷积替代下采样操作,整个网络计算量小、显存消耗少。
在这里插入图片描述
在这里插入图片描述
图6

该方法的优势是既快又准,如下图所示,ResNet18 backbone以26 FPS速度取得了80.4 mIoU。
在这里插入图片描述
AlignSeg采用类似HRNet保持分辨率的做法(图7),在保持分辨率过程中使用特征对齐模块(AlignFA)进行不同分辨特征之间的融合。

在这里插入图片描述

图8: AlignSeg(图源[2])

这篇关于【语义分割】——多层特征的融合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056829

相关文章

使用Python实现批量分割PDF文件

《使用Python实现批量分割PDF文件》这篇文章主要为大家详细介绍了如何使用Python进行批量分割PDF文件功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、架构设计二、代码实现三、批量分割PDF文件四、总结本文将介绍如何使用python进js行批量分割PDF文件的方法

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

C#中字符串分割的多种方式

《C#中字符串分割的多种方式》在C#编程语言中,字符串处理是日常开发中不可或缺的一部分,字符串分割是处理文本数据时常用的操作,它允许我们将一个长字符串分解成多个子字符串,本文给大家介绍了C#中字符串分... 目录1. 使用 string.Split2. 使用正则表达式 (Regex.Split)3. 使用

韦季李输入法_输入法和鼠标的深度融合

在数字化输入的新纪元,传统键盘输入方式正悄然进化。以往,面对实体键盘,我们常需目光游离于屏幕与键盘之间,以确认指尖下的精准位置。而屏幕键盘虽直观可见,却常因占据屏幕空间,迫使我们在操作与视野间做出妥协,频繁调整布局以兼顾输入与界面浏览。 幸而,韦季李输入法的横空出世,彻底颠覆了这一现状。它不仅对输入界面进行了革命性的重构,更巧妙地将鼠标这一传统外设融入其中,开创了一种前所未有的交互体验。 想象

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

理解分类器(linear)为什么可以做语义方向的指导?(解纠缠)

Attribute Manipulation(属性编辑)、disentanglement(解纠缠)常用的两种做法:线性探针和PCA_disentanglement和alignment-CSDN博客 在解纠缠的过程中,有一种非常简单的方法来引导G向某个方向进行生成,然后我们通过向不同的方向进行行走,那么就会得到这个属性上的图像。那么你利用多个方向进行生成,便得到了各种方向的图像,每个方向对应了很多

SAM2POINT:以zero-shot且快速的方式将任何 3D 视频分割为视频

摘要 我们介绍 SAM2POINT,这是一种采用 Segment Anything Model 2 (SAM 2) 进行零样本和快速 3D 分割的初步探索。 SAM2POINT 将任何 3D 数据解释为一系列多向视频,并利用 SAM 2 进行 3D 空间分割,无需进一步训练或 2D-3D 投影。 我们的框架支持各种提示类型,包括 3D 点、框和掩模,并且可以泛化到不同的场景,例如 3D 对象、室

《计算机视觉工程师养成计划》 ·数字图像处理·数字图像处理特征·概述~

1 定义         从哲学角度看:特征是从事物当中抽象出来用于区别其他类别事物的属性集合,图像特征则是从图像中抽取出来用于区别其他类别图像的属性集合。         从获取方式看:图像特征是通过对图像进行测量或借助算法计算得到的一组表达特性集合的向量。 2 认识         有些特征是视觉直观感受到的自然特征,例如亮度、边缘轮廓、纹理、色彩等。         有些特征需要通

AI和新基建赋能智慧工地超融合管理平台解决方案

1. 项目背景与需求 电力行业的工程管理正朝着智慧化发展,但目前仍处于起步阶段。为满足数字化、网络化、智能化的发展需求,需要构建一个高效综合监控平台,实现对电力项目全过程的精益化管控。 2. 综合管理平台的构建 该平台集成了超融合实景监控、安全智能监测、公共安全防范、技术管理、人员管控和绿色施工等多个方面,通过BIM协同优化设计,提升项目质量和进度管理。 3. 安全智能监测的重要性 安全

HalconDotNet中的图像特征与提取详解

文章目录 简介一、边缘特征提取二、角点特征提取三、区域特征提取四、纹理特征提取五、形状特征提取 简介   图像特征提取是图像处理中的一个重要步骤,用于从图像中提取有意义的特征,以便进行进一步的分析和处理。HalconDotNet提供了多种图像特征提取方法,每种方法都有其特定的应用场景和优缺点。 一、边缘特征提取   边缘特征提取是图像处理中最基本的特征提取方法之一,通过检