【转】【关于 A^x = A^(x % Phi(C) + Phi(C)) (mod C) 的若干证明】【指数循环节】

2024-06-13 04:58
文章标签 mod 循环 指数 若干 证明 phi

本文主要是介绍【转】【关于 A^x = A^(x % Phi(C) + Phi(C)) (mod C) 的若干证明】【指数循环节】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【关于 A^x = A^(x % Phi(C) + Phi(C)) (mod C) 的若干证明】【指数循环节】

以下内容全部原创,转载请注明作者 : AekdyCoin 以及本文地址


曾经看过如下一个公式:



以上的公式如果第一次见到,难免有不少疑惑:
为什么可以这么写?限制条件为什么是x >= Phi(C),这个公式为什么正确?

今天突发奇想,在纸上YY以后得到了以下证明(个人证明,如果有问题欢迎提出)

定理 1:
对于一个数对(A,C) 必然存在一个最小的正整数 L,满足


其中SPOS 是一个大于等于0的整数(下面具体介绍)
我们称L 为(A,C) 的最小循环节长度

证明:
根据鸽巢原理,得到在x >= C 后必然出现循环,从而定理得证.

定理 2:
对于数对 (A,C) 下面的公式必然成立


其中 k >= 0
既L 的任意倍数均为一个新的循环节长度.
证明:
根据定理1,不难得证.

定理 3:
对于数对 (A,C) 必然存在 一个最大的SPOS >=0 ,满足
(1)    若x属于区间 [0,SPOS -1] 内,得到的一个剩余系的长度为SPOS;
(2)    该剩余系和x属于[SPOS,+oo]的剩余系的交集为空!

证明:
对于一个SPOS,由于[0,SPOS-1]内不存在循环,所以x属于[0,SPOS-1]内得到的值是唯一的.
而第二点的证明也不难,因为如果不为空,那么必然可以缩小SPOS的值.

定理 4:
对于数对 (A,C) 若 (A,C) == 1,那么 L | Phi(C)

证明:
显然可以由欧拉公式,得到
A^Phi(C) = 1 (mod C)
而A^0 = 1 (mod C),于是出现了循环
由定理2,该定理得证.

定理5:
对于数对 (A,C) 若 A|C
那么有
SPOS >= CNT
其中CNT为满足  A^CNT | C的最大的正整数

下面分2个情况
(1) A^CNT == C
果断显然成立
(2) A^CNT  * B = C
于是我们假设对于[0,CNT] 内存在某个数i,有
A^i = A^x (mod C)
而由于x > CNT (因为[0,CNT]内不存在循环)
所以
A^CNT * A^(x - CNT) = A^i (mod A^CNT * B)
显然如果 i < CNT
那么是不可能有解的
因为(A^CNT, A^CNT * B) | A^i 显然不成立

于是Spos >= CNT 得证

定理 6:
对于一个数对 (A,C) 若存在



那么有 L | M

根据定理1,2 不难得到.



好了,上面写了那么多,是为了介绍 循环节的基本定理
下面开始正题,开始公式的证明

我们对于A 进行分解,得到素因子集合



下面我们把素因子分为2类
(1)    (Pi,C) == 1
(2)    (Pi,C) != 1

对于第一类情况,我们容易由定理4知道对于每一个 Pi,得到了Li (  数对 (Pi,C) 的最小循环节长) 必然是 Phi(C) 的因子
对于第二类情况,由定理5,”消去 因子”,转化为第一类的情况.得到了 这类的素因子Pi 的Li 依然为Phi(C) 的因子

@2011-01-11 对于第二类情况的更新

由循环定义得到

(Pi^ci)^x = (Pi^ci)^(x + Li) (mod C) (x >= spos)

那么我们假设C = Pi^CNT * B, 其中 (B, Pi) = 1

那么

(Pi^ci)^x = (Pi^ci)^(x + Li) (mod Pi^CNT * B)

同时消去Pi因子,最终可以得到:

[Pi^a] * [Pi^ci]^b = [Pi^a] * [Pi^ci]^b * [Pi^ (ci  * Li)] (mod B)

(Pi^a, B) = 1,逆元存在,2边同时乘上 Pi^a的逆元

[Pi^ci]^b = [Pi^ci]^b * [Pi^ (ci  * Li)] (mod B)

===>

[Pi^ci] ^b = [Pi^ci] ^ (b + Li) (mod B)

Li 为Phi(B)的因子,B为C的因子,既

Li | Phi(B), B| C

 

 

下面我们构造所有素因子的循环,既求他们的LCM,那由于定理6不难知道,(A,C) 的最小循环节长 L | LCM(L1,L2…LK)
而Li |Phi(C)

所以 L | Phi(C)

之后由定理1,2 公式得证.

推荐题目:

http://acm.fzu.edu.cn/problem.php?pid=1759
Problem 1759 Super A^B mod C  直接运用公式
http://acm.hdu.edu.cn/showproblem.php?pid=3221
2009年shanghai B,得到DP以后利用公式
http://acm.hdu.edu.cn/showproblem.php?pid=2837
Calculation 递归,注意细节
PS.  标程在某个细节处理错误,可是数据是对的.

这篇关于【转】【关于 A^x = A^(x % Phi(C) + Phi(C)) (mod C) 的若干证明】【指数循环节】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1056349

相关文章

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

JAVA中while循环的使用与注意事项

《JAVA中while循环的使用与注意事项》:本文主要介绍while循环在编程中的应用,包括其基本结构、语句示例、适用场景以及注意事项,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录while循环1. 什么是while循环2. while循环的语句3.while循环的适用场景以及优势4. 注意

Python中的异步:async 和 await以及操作中的事件循环、回调和异常

《Python中的异步:async和await以及操作中的事件循环、回调和异常》在现代编程中,异步操作在处理I/O密集型任务时,可以显著提高程序的性能和响应速度,Python提供了asyn... 目录引言什么是异步操作?python 中的异步编程基础async 和 await 关键字asyncio 模块理论

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

poj3750约瑟夫环,循环队列

Description 有N个小孩围成一圈,给他们从1开始依次编号,现指定从第W个开始报数,报到第S个时,该小孩出列,然后从下一个小孩开始报数,仍是报到S个出列,如此重复下去,直到所有的小孩都出列(总人数不足S个时将循环报数),求小孩出列的顺序。 Input 第一行输入小孩的人数N(N<=64) 接下来每行输入一个小孩的名字(人名不超过15个字符) 最后一行输入W,S (W < N),用

校验码:奇偶校验,CRC循环冗余校验,海明校验码

文章目录 奇偶校验码CRC循环冗余校验码海明校验码 奇偶校验码 码距:任何一种编码都由许多码字构成,任意两个码字之间最少变化的二进制位数就称为数据检验码的码距。 奇偶校验码的编码方法是:由若干位有效信息(如一个字节),再加上一个二进制位(校验位)组成校验码。 奇校验:整个校验码中1的个数为奇数 偶校验:整个校验码中1的个数为偶数 奇偶校验,可检测1位(奇数位)的错误,不可纠错。

react笔记 8-17 属性绑定 class绑定 引入图片 循环遍历

1、绑定属性 constructor(){super()this.state={name:"张三",title:'我是一个title'}}render() {return (<div><div>aaaaaaa{this.state.name}<div title={this.state.title}>我是一个title</div></div></div>)} 绑定属性直接使用花括号{}   注

Spring是如何解决循环依赖?

现象解释: 在Spring框架中,循环依赖(Circular Dependency)是指两个或多个Bean之间相互依赖,形成了一个循环。例如,Bean A依赖于Bean B,而Bean B又依赖于Bean A。Spring通过多种机制解决循环依赖问题,具体来说,主要有以下几种方式: 1.三级缓存机制 Spring容器在实例化Bean时使用了三级缓存来解决循环依赖,主要涉及三个缓存结构: 一级

FPGA开发:条件语句 × 循环语句

条件语句 if_else语句 if_else语句,用来判断是否满足所给定的条件,根据判断的结果(真或假)决定执行给出的两种操作之一。 if(表达式)语句; 例如: if(a>b) out1=int1; if(表达式)         语句1; else         语句2; 例如: if(a>b)out1=int1;elseout1=int2; if(表达式1) 语句1; els

shell循环sleep while例子 条件判断

i=1# 小于5等于时候才执行while [ ${i} -le 5 ]doecho ${i}i=`expr ${i} + 1`# 休眠3秒sleep 3doneecho done 参考 http://c.biancheng.net/cpp/view/2736.html