(转载)漫画:为什么你需要了解数据结构中的图?

2024-06-13 01:38

本文主要是介绍(转载)漫画:为什么你需要了解数据结构中的图?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文地址:https://blog.csdn.net/csdnnews/article/details/88809812

640?wx_fmt=jpeg

 

640?wx_fmt=jpeg

 

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

 

640?wx_fmt=png

图的概念

 

究竟什么是图呢?大家先来想一想咱们常用的互联网产品。

举个栗子,大家一定都用过微信,假设你的微信朋友圈中有若干好友:张三、李四、王五、赵六、七大姑、八大姨。

 

640?wx_fmt=png

而你七大姑的微信号里,又有若干好友:你、八大姨、Jack、Rose。

640?wx_fmt=png

微信中,许许多多的用户组成了一个多对多的朋友关系网,这个关系网就是数据结构当中的图(Graph)

再举一个栗子,咱们在用百度地图的时候,常常会使用导航功能。比如你在地铁站A附近,你想去的地点在地铁站F附近,那么导航会告诉你一个最佳的地铁线路换乘方案。

640?wx_fmt=png

这许许多多地铁站所组成的交通网络,也可以认为是数据结构当中的图。

图,是一种比树更为复杂的数据结构。树的节点之间是一对多的关系,并且存在父与子的层级划分;而图的顶点(注意,这里不叫节点)之间是多对多的关系,并且所有顶点都是平等的,无所谓谁是父谁是子。

640?wx_fmt=png

 

640?wx_fmt=png

图的术语

 

下面我们来介绍一下图的基本术语:

640?wx_fmt=png

在图中,最基本的单元是顶点(vertex),相当于树中的节点。顶点之间的关联关系,被称为边(edge)

在有些图中,每一条边并不是完全等同的。比如刚才地铁线路的例子,从A站到B站的距离是3公里,从B站到C站的距离是5公里......这样就引入一个新概念:边的权重(Weight)。涉及到权重的图,被称为带权图(Weighted Graph)

还有一种图,顶点之间的关联并不是完全对称的。还拿微信来举例,你的好友列表里有我,但我的好友列表里未必有你。

640?wx_fmt=jpeg

 

640?wx_fmt=jpeg

 

640?wx_fmt=png

 

640?wx_fmt=jpeg

这样一来,顶点之间的边就有了方向的区分,这种带有方向的图被称为有向图

640?wx_fmt=png

相应的,在QQ当中,只要我把你从好友里删除,你在自己的好友列表里也就看不到我了。(貌似是这样)

因此,QQ的好友关系可以认为是一个没有方向区分的图,这种图被称为无向图

 

640?wx_fmt=png

图的表示

 

640?wx_fmt=jpeg

 

640?wx_fmt=jpeg

邻接矩阵

拥有n个顶点的图,它所包含的连接数量最多是n(n-1)个。因此,要表达各个顶点之间的关联关系,最清晰易懂的方式是使用二维数组(矩阵)。

具体如何表示呢?我们首先来看看无向图的矩阵表示:

640?wx_fmt=png

 

如图所示,顶点0和顶点1之间有边关联,那么矩阵中的元素A[0][1]与A[1][0]的值就是1;顶点1和顶点2之间没有边关联,那么矩阵中的元素A[1][2]与A[2][1]的值就是0。

 

像这样表达图中顶点关联关系的矩阵,就叫做邻接矩阵

 

需要注意的是,矩阵从左上到右下的一条对角线,其上的元素值必然是0。这样很容易想明白:任何一个顶点与它自身是没有连接的。

 

同时,无向图对应的矩阵是一个对称矩阵,V0和V1有关联,那么V1和V0也必定有关联,因此A[0][1]和A[1][0]的值一定相等。

 

那么,有向图的邻接矩阵又是什么样子呢?

 

640?wx_fmt=png

 

从图中可以看出,有向图不再是一个对称矩阵。从V0可以到达V1,从V1却未必能到达V0,因此A[0][1]和A[1][0]的值不一定相等。

 

邻接矩阵的优点是什么呢?简单直观,可以快速查到一个顶点和另一顶点之间的关联关系。

 

邻接矩阵的缺点是什么呢?占用了太多的空间。试想,如果一个图有1000个顶点,其中只有10个顶点之间有关联(这种情况叫做稀疏图),却不得不建立一个1000X1000的二维数组,实在太浪费了。

 

邻接表和逆邻接表

 

为了解决邻接矩阵占用空间的问题,人们想到了另一种图的表示方法:邻接表。

 

640?wx_fmt=png

 

在邻接表中,图的每一个顶点都是一个链表的头节点,其后连接着该顶点能够直接达到的相邻顶点。

640?wx_fmt=jpeg

640?wx_fmt=jpeg

 

很明显,这种邻接表的存储方式,占用的空间比邻接矩阵要小得多。

 

要想查出从顶点0能否到达顶点1,该怎么做呢?很简单,我们从顶点0开始,顺着链表的头节点向后遍历,看看后继的节点中是否存在顶点1。

 

要想查出顶点0能够到达的所有相邻节点,也很简单,从顶点0向后的所有链表节点,就是顶点0能到达的相邻节点。

 

那么,要想查出有哪些节点能一步到达顶点1,又该怎么做呢?这样就麻烦一些了,我们要遍历每一个顶点所在的链表,看看链表节点中是否包含节点1,最后发现顶点0和顶点3可以到达顶点1。

 

640?wx_fmt=png

 

像这种逆向查找的麻烦,该如何解决呢?我们可以是用逆邻接表来解决。

 

640?wx_fmt=png

 

逆邻接表顾名思义,和邻接表是正好相反的。逆邻接表每一个顶点作为链表的头节点,后继节点所存储的是能够直接达到该顶点的相邻顶点。

 

这样一来,要想查出有哪些节点能一步到达顶点1就容易了,从顶点1向后的所有链表节点,就是能一步到达顶点1的节点。

 

因此,我们可以根据实际需求,选择使用邻接表还是逆邻接表。

 

640?wx_fmt=jpeg

 

640?wx_fmt=jpeg

 

十字链表

 

十字链表长什么样呢?用最直观的示意,是下面这样:

 

640?wx_fmt=png

 

如图所示,十字链表的每一个顶点,都是两个链表的根节点,其中一个链表存储着该顶点能到达的相邻顶点,另一个链表存储着能到达该顶点的相邻节点。

 

不过,上图只是一个便于理解的示意图,我们没有必要把链表的节点都重复存储两次。在优化之后的十字链表中,链表的每一个节点不再是顶点,而是一条边,里面包含起止顶点的下标。

 

十字链表节点和边的对应关系,如下图所示:

 

640?wx_fmt=png

 

因此,优化之后的十字链表,是下面这个样子:

 

640?wx_fmt=png

 

图中每一条带有蓝色箭头的链表,存储着从顶点出发的边;每一条带有橙色箭头的链表,存储着进入顶点的边。初学十字链表的时候,可能会觉得有些乱。

 

 

640?wx_fmt=png

总结

 

 

1.我们这一次介绍了图的定义和分类。根据图的边是否有方向,可分为有向图无向图。根据图的边是否有权重,可分为带权无权图。当然,也可以把两个维度结合起来描述,比如有向带权图,无向无权图等等。

 

2.图的表示方法有很多种。包括邻接矩阵、邻接表、逆邻接表、十字链表(还有一种邻接多重表,有兴趣的小伙伴可以自学下)。

640?wx_fmt=jpeg

 

640?wx_fmt=jpeg

 

640?wx_fmt=jpeg

 

这篇关于(转载)漫画:为什么你需要了解数据结构中的图?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1055933

相关文章

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

《数据结构(C语言版)第二版》第八章-排序(8.3-交换排序、8.4-选择排序)

8.3 交换排序 8.3.1 冒泡排序 【算法特点】 (1) 稳定排序。 (2) 可用于链式存储结构。 (3) 移动记录次数较多,算法平均时间性能比直接插入排序差。当初始记录无序,n较大时, 此算法不宜采用。 #include <stdio.h>#include <stdlib.h>#define MAXSIZE 26typedef int KeyType;typedef char In

速了解MySQL 数据库不同存储引擎

快速了解MySQL 数据库不同存储引擎 MySQL 提供了多种存储引擎,每种存储引擎都有其特定的特性和适用场景。了解这些存储引擎的特性,有助于在设计数据库时做出合理的选择。以下是 MySQL 中几种常用存储引擎的详细介绍。 1. InnoDB 特点: 事务支持:InnoDB 是一个支持 ACID(原子性、一致性、隔离性、持久性)事务的存储引擎。行级锁:使用行级锁来提高并发性,减少锁竞争

【408数据结构】散列 (哈希)知识点集合复习考点题目

苏泽  “弃工从研”的路上很孤独,于是我记下了些许笔记相伴,希望能够帮助到大家    知识点 1. 散列查找 散列查找是一种高效的查找方法,它通过散列函数将关键字映射到数组的一个位置,从而实现快速查找。这种方法的时间复杂度平均为(

PHP: 深入了解一致性哈希

前言 随着memcache、redis以及其它一些内存K/V数据库的流行,一致性哈希也越来越被开发者所了解。因为这些内存K/V数据库大多不提供分布式支持(本文以redis为例),所以如果要提供多台redis server来提供服务的话,就需要解决如何将数据分散到redis server,并且在增减redis server时如何最大化的不令数据重新分布,这将是本文讨论的范畴。 取模算法 取模运

浙大数据结构:树的定义与操作

四种遍历 #include<iostream>#include<queue>using namespace std;typedef struct treenode *BinTree;typedef BinTree position;typedef int ElementType;struct treenode{ElementType data;BinTree left;BinTre

Python 内置的一些数据结构

文章目录 1. 列表 (List)2. 元组 (Tuple)3. 字典 (Dictionary)4. 集合 (Set)5. 字符串 (String) Python 提供了几种内置的数据结构来存储和操作数据,每种都有其独特的特点和用途。下面是一些常用的数据结构及其简要说明: 1. 列表 (List) 列表是一种可变的有序集合,可以存放任意类型的数据。列表中的元素可以通过索