曾经参与的一次并发优化回顾

2024-06-12 23:32

本文主要是介绍曾经参与的一次并发优化回顾,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

业务场景:

我们有一个在线考试的模块,当时需要支持用户同时1000人的提交考试试卷。

问题:

测试者采用jmeter测试提交考试答案的接口,100个线程并发的时候。报错Max number of active transactions reached:50。错误率有25%。

问题分析:

我们在提交答案的接口采用了spring的事务@Transactional。我们采用的atomikos来实现分布式事务。在jta.properties中有com.atomikos.icatch.max_actives = 50。如果我们当前我们同时的事务数量大于配置的50的时候,就会报错。

尝试解决:

我们可以增加max_actives,但是我们的并发量大的时候,依然会有问题。

当很多用户同时提交答案的时候,我们同时会有大量的事务处理,对我们的数据库mysql的压力也比较大。我们可以采用队列的形式来削峰,我们用这种异步的形式把请求的数据放到队列,给前端提示一个考试结果正在计算中的展示,我们再从队列中拿数据去消费。我们用的是kafka

实现:

直接采用kafkaTemplate 发送数据,再设置一个监听KafkaListener,获取对应的topic数据

进一步问题:

改进之后,可以支持一定并发,但是速度并不快。

再次分析:

通过观察服务器性能,发现这个问题出现在io上,我们提交的对象包含所有题目的答案,我们的题目数量很多,100道题目时候,还有可能存在简答题的时候,我们这个传过去的对象就很大了,一个空的String对象有24字节,一个题目包含一个Integer的试题类型、Object的考生答案、Long类型的试卷Id。因为是包装类型,含有对象头信息。64位没有开启压缩指针Interger=Header(标记头8字节 + 对象指针8字节) + int(4字节)+ 对齐(4) = 24字节。可以看出一个题目大约有100个字节,100个题目加上用户的基础信息,差不多1万个字节,也差不多是10KB,1000人同时提交就有10M。

我们可以把这个对象优化,序列化我们自己的可以解析,更小的对象传给kafka。我们在kafka中一般会配置producer和consumer的key、value的serializer,一般都是配置StringSerializer,kafka默认提供了一些(de)Serializer,String、byteBuffer、ByteArray、Bytes、Long等,这里我们采用ByteBuffer,可以把我们的数据压缩到很小,这样我们传给kafka的数据就会小很多。

代码

// 序列化我们的对象
public ByteBuffer serialize(TestAnswerVO vo) {
    ByteBuffer byteBuffer = ByteBuffer.allocate(calculateCapacity(vo));
    byteBuffer.putLong(obtainType(vo.getUserId()));
    byteBuffer.putLong(obtainType(vo.getTestId()));
    byteBuffer.putInt(vo.getCostTime());

    byte[] accounts = vo.getAccount().getBytes();
    byteBuffer.putInt(accounts.length);
    if (accounts.length > 0)
        byteBuffer.put(vo.getAccount().getBytes());

    if (CollectionUtils.isNotEmpty(vo.getList())) {
        byteBuffer.putInt(vo.getList().size());
        for (ExaAnswerCardVO e : vo.getList()) {
            byteBuffer.putLong(obtainType(e.getTestPageId()));
            byteBuffer.putLong(obtainType(e.getExaResultId()));
            byteBuffer.putInt(e.getType());

            if (Objects.isNull(e.getExaAnswer())) {
                byteBuffer.putInt(0);
            } else {
                byte[] bytes = e.getExaAnswer().toString().getBytes();
                byteBuffer.putInt(bytes.length);
                if (bytes.length > 0) {
                    byteBuffer.put(bytes);
                }
            }
        }
    }
    byteBuffer.flip();
    return byteBuffer;
}


// 反序列化对象 我们只需要从ByteBuffer按照我们put的规则取出来
//我们需要给producer配置ByteBufferSerializer,默认的kafkaTemplate是StringSerializer
@Value("${spring.kafka.bootstrap-servers}")
private String bootstrapServers;

@Bean //纳入spring管理,不用每次去取值
public Map<String, Object> producerConfigs() {
    Map<String, Object> props = new HashMap<>();
    props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
    props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
    props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, ByteBufferSerializer.class);
    return props;
}
//我们需要给consumer配置ByteBufferSerializer,默认的kafkaTemplate是StringSerializer

@Value("${spring.kafka.bootstrap-servers}")
private String bootstrapServers;

@Value("${spring.kafka.consumer.group-id}")
private String consumerGroupId;

public Map<String, Object> consumerConfigs() {
    Map<String, Object> props = new HashMap<>();
    props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
    props.put(ConsumerConfig.GROUP_ID_CONFIG, consumerGroupId);
    props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
    props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, ByteBufferDeserializer.class);
    return props;
}

@Bean
public ConcurrentKafkaListenerContainerFactory<String, ByteBuffer> eduTestKafkaFactory() {
    ConsumerFactory<String, ByteBuffer> consumerFactory = new DefaultKafkaConsumerFactory<>(consumerConfigs());
    ConcurrentKafkaListenerContainerFactory<String, ByteBuffer> factory = new ConcurrentKafkaListenerContainerFactory();
    factory.setConsumerFactory(consumerFactory);
    return factory;
}

//在KafkaListener的时候,配置containerFactory,就可以获取我们的consumerConfigs
@KafkaListener(topics = EDU_SUBMIT_TEST_TOPIC, containerFactory = "eduTestKafkaFactory")
通过我们自己的指定的serializer,我们可以把我们对象压缩为原来的十分之一,大大减小我们传给kafka的对象,当然我们当前只给指定类做了序列化,以后添加字段也不通用,现在可以采用Avro来(反)序列化对象。KafkaAvroDeserializer也是非常强大的。

问题

当线上考试的时候,每次提交就有可能导致成绩出不来,最开始初步猜想,数据丢失,可是数据为什么会丢失了?到底是kafka没有接受到数据,还是kafka接受到数据没有消费掉,我们采用的是kafkaListenner。还是有一部分提交可以成功的,开发和测试环境都是Ok的,只有生产有问题。

我们借助kafka的命令查看消费情况

kafka 查看所有的消费者组

bin/kafka-consumer-groups.sh --bootstrap-server ip:9092 --list
kafka 查看某个消费者组的消费数据情况
bin/kafka-consumer-groups.sh --bootstrap-server ip:9092 --group strive --describe
我们看到对同一个topic有一个消费组,但是这一个消费者有两个节点在执行,这个两个节点分别是生产和预生产,预生产是运营后台的,但是运营后台消费数据却没有写入到业务库里面,导致考试的成绩总是出不来。我们停掉预生产之后,考试就正常了,但是预生产还是需要启动的,于是我们根据环境来设置不同的groupId,并把对应的factory的autoStartUp设置为false

/**
 * 获取不同环境的消费者组Id
 * @return
 */
public String obtainConsumerGroupId() {
    String logEnv = environment.getProperty("log_env");
    String consumerGroupId = "";
    if (PRE_PROD.equals(logEnv))
        consumerGroupId = environment.getProperty("spring.application.name") + "-consumer-" + PRE_PROD;
    else
        consumerGroupId = environment.getProperty("spring.kafka.consumer.group-id");
    log.info("edu test kafka config curr consumer group id is [{}] .", consumerGroupId);
    return consumerGroupId;
}

/**
 * log_env=preprod  预生产 [预生产 不获取数据]
 * log_env=prod   生产
 * @return
 */
public boolean setAutoStartup() {
    String logEnv = environment.getProperty("log_env");
    log.info("edu test kafka config curr log_env [{}] .", logEnv);
    return !PRE_PROD.equals(logEnv);
}
 

思路:

削峰

优化内存和数据大小

持续观察

思考与讨论:

1.序列化和反序列化这块还没有完全理解,有机会可以再验证下。

2.在多内容传输情况下,可能会出现类似问题,可以从这方面排查。

3.去面试的时候面试我的小哥刚好也做过这块,有一些同感,不过他提出了一些不同的观点,都是设计服务器的,有以下几点:

1) 服务器请求数最高能接受多少

2) 服务器的最大带宽是多少

3) 压力高时,服务器哪块出现性能问题,是CPU、内存、还是IO,不同的指标可能说明不同的问题,比如是CPU,说明可能接口对应的程序处理逻辑复杂;如果是内存,可能是接口对应的方法内存管理不当,比如没有释放一些连接什么的;如果是IO,可能是接口对应的方法内有太多的IO操作,是否可能考虑更换为多路复用的NIO还是其它处理方式

我想了下他说的这几点也有些道理,后面再遇到类似问题也可以从这几方面入手,希望有机会能和他再请教和讨论下。

这篇关于曾经参与的一次并发优化回顾的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1055646

相关文章

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python多线程并发测试过程

《python多线程并发测试过程》:本文主要介绍python多线程并发测试过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、并发与并行?二、同步与异步的概念?三、线程与进程的区别?需求1:多线程执行不同任务需求2:多线程执行相同任务总结一、并发与并行?1、

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel

Java并发编程之如何优雅关闭钩子Shutdown Hook

《Java并发编程之如何优雅关闭钩子ShutdownHook》这篇文章主要为大家详细介绍了Java如何实现优雅关闭钩子ShutdownHook,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 目录关闭钩子简介关闭钩子应用场景数据库连接实战演示使用关闭钩子的注意事项开源框架中的关闭钩子机制1.