曾经参与的一次并发优化回顾

2024-06-12 23:32

本文主要是介绍曾经参与的一次并发优化回顾,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

业务场景:

我们有一个在线考试的模块,当时需要支持用户同时1000人的提交考试试卷。

问题:

测试者采用jmeter测试提交考试答案的接口,100个线程并发的时候。报错Max number of active transactions reached:50。错误率有25%。

问题分析:

我们在提交答案的接口采用了spring的事务@Transactional。我们采用的atomikos来实现分布式事务。在jta.properties中有com.atomikos.icatch.max_actives = 50。如果我们当前我们同时的事务数量大于配置的50的时候,就会报错。

尝试解决:

我们可以增加max_actives,但是我们的并发量大的时候,依然会有问题。

当很多用户同时提交答案的时候,我们同时会有大量的事务处理,对我们的数据库mysql的压力也比较大。我们可以采用队列的形式来削峰,我们用这种异步的形式把请求的数据放到队列,给前端提示一个考试结果正在计算中的展示,我们再从队列中拿数据去消费。我们用的是kafka

实现:

直接采用kafkaTemplate 发送数据,再设置一个监听KafkaListener,获取对应的topic数据

进一步问题:

改进之后,可以支持一定并发,但是速度并不快。

再次分析:

通过观察服务器性能,发现这个问题出现在io上,我们提交的对象包含所有题目的答案,我们的题目数量很多,100道题目时候,还有可能存在简答题的时候,我们这个传过去的对象就很大了,一个空的String对象有24字节,一个题目包含一个Integer的试题类型、Object的考生答案、Long类型的试卷Id。因为是包装类型,含有对象头信息。64位没有开启压缩指针Interger=Header(标记头8字节 + 对象指针8字节) + int(4字节)+ 对齐(4) = 24字节。可以看出一个题目大约有100个字节,100个题目加上用户的基础信息,差不多1万个字节,也差不多是10KB,1000人同时提交就有10M。

我们可以把这个对象优化,序列化我们自己的可以解析,更小的对象传给kafka。我们在kafka中一般会配置producer和consumer的key、value的serializer,一般都是配置StringSerializer,kafka默认提供了一些(de)Serializer,String、byteBuffer、ByteArray、Bytes、Long等,这里我们采用ByteBuffer,可以把我们的数据压缩到很小,这样我们传给kafka的数据就会小很多。

代码

// 序列化我们的对象
public ByteBuffer serialize(TestAnswerVO vo) {
    ByteBuffer byteBuffer = ByteBuffer.allocate(calculateCapacity(vo));
    byteBuffer.putLong(obtainType(vo.getUserId()));
    byteBuffer.putLong(obtainType(vo.getTestId()));
    byteBuffer.putInt(vo.getCostTime());

    byte[] accounts = vo.getAccount().getBytes();
    byteBuffer.putInt(accounts.length);
    if (accounts.length > 0)
        byteBuffer.put(vo.getAccount().getBytes());

    if (CollectionUtils.isNotEmpty(vo.getList())) {
        byteBuffer.putInt(vo.getList().size());
        for (ExaAnswerCardVO e : vo.getList()) {
            byteBuffer.putLong(obtainType(e.getTestPageId()));
            byteBuffer.putLong(obtainType(e.getExaResultId()));
            byteBuffer.putInt(e.getType());

            if (Objects.isNull(e.getExaAnswer())) {
                byteBuffer.putInt(0);
            } else {
                byte[] bytes = e.getExaAnswer().toString().getBytes();
                byteBuffer.putInt(bytes.length);
                if (bytes.length > 0) {
                    byteBuffer.put(bytes);
                }
            }
        }
    }
    byteBuffer.flip();
    return byteBuffer;
}


// 反序列化对象 我们只需要从ByteBuffer按照我们put的规则取出来
//我们需要给producer配置ByteBufferSerializer,默认的kafkaTemplate是StringSerializer
@Value("${spring.kafka.bootstrap-servers}")
private String bootstrapServers;

@Bean //纳入spring管理,不用每次去取值
public Map<String, Object> producerConfigs() {
    Map<String, Object> props = new HashMap<>();
    props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
    props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
    props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, ByteBufferSerializer.class);
    return props;
}
//我们需要给consumer配置ByteBufferSerializer,默认的kafkaTemplate是StringSerializer

@Value("${spring.kafka.bootstrap-servers}")
private String bootstrapServers;

@Value("${spring.kafka.consumer.group-id}")
private String consumerGroupId;

public Map<String, Object> consumerConfigs() {
    Map<String, Object> props = new HashMap<>();
    props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
    props.put(ConsumerConfig.GROUP_ID_CONFIG, consumerGroupId);
    props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
    props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, ByteBufferDeserializer.class);
    return props;
}

@Bean
public ConcurrentKafkaListenerContainerFactory<String, ByteBuffer> eduTestKafkaFactory() {
    ConsumerFactory<String, ByteBuffer> consumerFactory = new DefaultKafkaConsumerFactory<>(consumerConfigs());
    ConcurrentKafkaListenerContainerFactory<String, ByteBuffer> factory = new ConcurrentKafkaListenerContainerFactory();
    factory.setConsumerFactory(consumerFactory);
    return factory;
}

//在KafkaListener的时候,配置containerFactory,就可以获取我们的consumerConfigs
@KafkaListener(topics = EDU_SUBMIT_TEST_TOPIC, containerFactory = "eduTestKafkaFactory")
通过我们自己的指定的serializer,我们可以把我们对象压缩为原来的十分之一,大大减小我们传给kafka的对象,当然我们当前只给指定类做了序列化,以后添加字段也不通用,现在可以采用Avro来(反)序列化对象。KafkaAvroDeserializer也是非常强大的。

问题

当线上考试的时候,每次提交就有可能导致成绩出不来,最开始初步猜想,数据丢失,可是数据为什么会丢失了?到底是kafka没有接受到数据,还是kafka接受到数据没有消费掉,我们采用的是kafkaListenner。还是有一部分提交可以成功的,开发和测试环境都是Ok的,只有生产有问题。

我们借助kafka的命令查看消费情况

kafka 查看所有的消费者组

bin/kafka-consumer-groups.sh --bootstrap-server ip:9092 --list
kafka 查看某个消费者组的消费数据情况
bin/kafka-consumer-groups.sh --bootstrap-server ip:9092 --group strive --describe
我们看到对同一个topic有一个消费组,但是这一个消费者有两个节点在执行,这个两个节点分别是生产和预生产,预生产是运营后台的,但是运营后台消费数据却没有写入到业务库里面,导致考试的成绩总是出不来。我们停掉预生产之后,考试就正常了,但是预生产还是需要启动的,于是我们根据环境来设置不同的groupId,并把对应的factory的autoStartUp设置为false

/**
 * 获取不同环境的消费者组Id
 * @return
 */
public String obtainConsumerGroupId() {
    String logEnv = environment.getProperty("log_env");
    String consumerGroupId = "";
    if (PRE_PROD.equals(logEnv))
        consumerGroupId = environment.getProperty("spring.application.name") + "-consumer-" + PRE_PROD;
    else
        consumerGroupId = environment.getProperty("spring.kafka.consumer.group-id");
    log.info("edu test kafka config curr consumer group id is [{}] .", consumerGroupId);
    return consumerGroupId;
}

/**
 * log_env=preprod  预生产 [预生产 不获取数据]
 * log_env=prod   生产
 * @return
 */
public boolean setAutoStartup() {
    String logEnv = environment.getProperty("log_env");
    log.info("edu test kafka config curr log_env [{}] .", logEnv);
    return !PRE_PROD.equals(logEnv);
}
 

思路:

削峰

优化内存和数据大小

持续观察

思考与讨论:

1.序列化和反序列化这块还没有完全理解,有机会可以再验证下。

2.在多内容传输情况下,可能会出现类似问题,可以从这方面排查。

3.去面试的时候面试我的小哥刚好也做过这块,有一些同感,不过他提出了一些不同的观点,都是设计服务器的,有以下几点:

1) 服务器请求数最高能接受多少

2) 服务器的最大带宽是多少

3) 压力高时,服务器哪块出现性能问题,是CPU、内存、还是IO,不同的指标可能说明不同的问题,比如是CPU,说明可能接口对应的程序处理逻辑复杂;如果是内存,可能是接口对应的方法内存管理不当,比如没有释放一些连接什么的;如果是IO,可能是接口对应的方法内有太多的IO操作,是否可能考虑更换为多路复用的NIO还是其它处理方式

我想了下他说的这几点也有些道理,后面再遇到类似问题也可以从这几方面入手,希望有机会能和他再请教和讨论下。

这篇关于曾经参与的一次并发优化回顾的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1055646

相关文章

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

电脑多久清理一次灰尘合? 合理清理电脑上灰尘的科普文

《电脑多久清理一次灰尘合?合理清理电脑上灰尘的科普文》聊起电脑清理灰尘这个话题,我可有不少话要说,你知道吗,电脑就像个勤劳的工人,每天不停地为我们服务,但时间一长,它也会“出汗”——也就是积累灰尘,... 灰尘的堆积几乎是所有电脑用户面临的问题。无论你的房间有多干净,或者你的电脑是否安装了灰尘过滤器,灰尘都

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份