Kinect for windows 开发入门 五:彩色数据获取和使用

2024-06-12 18:32

本文主要是介绍Kinect for windows 开发入门 五:彩色数据获取和使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景知识

1.      WriteableBitmap之于Bitmap,就好像StringBuilder之于String。可以减少内存消耗。WriteableBitmap在初始化时需要指定高度,宽度和格式。上一节示例中,获取每帧图像都需要创建并初始化一个新的Bitmap,对GPU来说是一个极大的负担。用WriteableBitmap替代可以很大程度上提高性能。

2.      色彩数据流的解析式根据格式而定的。ColorImageFormat枚举用来指定格式。下表列出了支持的格式。简单的说支持四种颜色格式RGBYUVBayerInfrared;两种分辨率640*4801280*960;最快支持30帧每秒;

ColorImageFormat

Description

含义

InfraredResolution640x480Fps30

16 bits, using the top 10 bits from a PixelFormats.Gray16  format (with the 6 least significant bits always set to 0) whose resolution is  640 x 480 and frame rate is 30 frames per second. Introduced in 1.6.

格式:红外(有亮度无彩色)

分辨率:640*480

最高频:30/

RawBayerResolution1280x960Fps12

Bayer data (8 bits per pixel, layout in alternating  pixels of red, green and blue) whose resolution is 1280 x 960 and frame rate  is 12 frames per second. Introduced in 1.6.

格式:Bayer

分辨率:1280*960

最高频:12/

RawBayerResolution640x480Fps30

Bayer data (8 bits per pixel, layout in alternating  pixels of red, green and blue) whose resolution is 640 x 480 and frame rate  is 30 frames per second. Introduced in 1.6.

格式:Bayer

分辨率:640*480

最高频:30/

RawYuvResolution640x480Fps15

Raw YUV data whose resolution is 640 x 480 and frame  rate is 15 frames per second.

格式:YUV

分辨率:640*480

最高频:15/

RgbResolution1280x960Fps12

RBG data whose resolution is 1280 x 960 and frame rate  is 12 frames per second.

格式:RGB

分辨率:1280*960

最高频:12/

RgbResolution640x480Fps30

RBG data whose resolution is 640 x 480 and frame rate is  30 frames per second.

格式:RGB

分辨率:640*480

最高频:30/

YuvResolution640x480Fps15

YUV data whose resolution is 640 x 480 and frame rate is  15 frames per second.

格式:YUV

分辨率:640*480

最高频:15/

Undefined

The format is not defined.

图像格式未定义

3.      示例中使用的颜色格式是Bgr32,每个像素占4个字节,每个字节8个位。第一个字节是蓝色通道,第二个是绿色,第三个是红色,第四个待用(表示像素的Alpha?或者透明度)。

4.      Stride是指图像中一行像素所占的字节(RGBwidth*height*BytesPerPixel=640*480*4).

5.      Stream会为每一帧图像加一个编号(不一定连续)和Timestamp

6.      获取ColorStream有两种方式,主动和被动,示例中采用被动模式(多用),即被动的持续接受sensor传过来的信息;主动则是,根据需要定时地去获取,可参考“拉”的模式

7.      本示例展示了一些简单的图像处理。下面代码中以EditColor_开头的方法就是各种处理方法。

 

示例代码

        privateKinectSensor kinect;

        privateWriteableBitmapcolorImageBitmap;

        privateInt32RectcolorImageBitmapRect;

        privateint colorImageStride;

        privatebyte[] colorImagePixelData;

 

 

        // Get and set connected Kinect Sensor;

        publicKinectSensor Kinect

        {

            get

            {

                returnthis.kinect;

            }

 

            set

            {

                if (this.kinect != value)

                {

                    if (null != this.kinect)

                   {

                       UninitializeKinectSensor(this.kinect);

                       this.kinect= null;

                   }

                }

 

                if (null != value && KinectStatus.Connected== value.Status)

                {

                    this.kinect = value;

                   InitializeKinectSensor(this.kinect);

                }

            }

        }

 

        // Bind color stream handler

        privatevoid InitializeKinectSensor(KinectSensorkinectSensor)

        {

            if (null != kinectSensor)

            {

                ColorImageStreamcolorStream = kinectSensor.ColorStream;

                colorStream.Enable();

 

                this.colorImageBitmap = newWriteableBitmap(colorStream.FrameWidth,colorStream.FrameHeight, 96, 96, PixelFormats.Bgr32, null);

                this.colorImageBitmapRect = newInt32Rect(0, 0,colorStream.FrameWidth, colorStream.FrameHeight);

                this.colorImageStride =colorStream.FrameWidth * colorStream.FrameBytesPerPixel;

               ColorImageElement.Source = this.colorImageBitmap;

 

               kinectSensor.ColorFrameReady += kinectSensor_ColorFrameReady;

               kinectSensor.Start();

            }

        }

 

        privatevoid UninitializeKinectSensor(KinectSensorkinectSensor)

        {

            if (kinectSensor != null)

            {

               kinectSensor.Stop();

               kinectSensor.ColorFrameReady -= newEventHandler<ColorImageFrameReadyEventArgs>(kinectSensor_ColorFrameReady);

            }

        }

 

        privatevoidkinectSensor_ColorFrameReady(object sender, ColorImageFrameReadyEventArgs e)

        {

            // Use 'using' to dispose the frame after using.

            // 30 frame per second

            using (ColorImageFrame frame =e.OpenColorImageFrame())

            {

                if (null != frame)

                {

                    byte[] pixelData = newbyte[frame.PixelDataLength];

                   frame.CopyPixelDataTo(pixelData);

                   EditColor_HighSaturation(pixelData, frame.BytesPerPixel);

                    this.colorImageBitmap.WritePixels(this.colorImageBitmapRect,pixelData, this.colorImageStride,0);

                }

            }

 

        }

 

        privatevoid EditColor_Inverted(byte[] pixelData, int bytesPerPixel)

        {

            for (int i = 0; i <pixelData.Length; i += bytesPerPixel)

            {

               pixelData[i] = 0x00;//Blue

               pixelData[i + 1] = 0x00;//Green

            }

        }

 

        privatevoid EditColor_Gray(byte[] pixelData, int bytesPerPixel)

        {

            for (int i = 0; i <pixelData.Length; i += bytesPerPixel)

            {

                byte gray = Math.Max(pixelData[i],pixelData[i + 1]);

                gray= Math.Max(gray,pixelData[i + 2]);

               pixelData[i] = gray;

               pixelData[i + 1] = gray;

               pixelData[i + 2] = gray;

            }

        }

 

        privatevoid EditColor_BlackWhite(byte[] pixelData, int bytesPerPixel)

        {

            for (int i = 0; i <pixelData.Length; i += bytesPerPixel)

            {

                byte gray = Math.Min(pixelData[i], pixelData[i + 1]);

                gray= Math.Min(gray,pixelData[i + 2]);

               pixelData[i] = gray;

               pixelData[i + 1] = gray;

               pixelData[i + 2] = gray;

            }

        }

 

        privatevoid EditColor_Apocalyptic(byte[] pixelData, int bytesPerPixel)

        {

            for (int i = 0; i <pixelData.Length; i += bytesPerPixel)

            {

               pixelData[i] = pixelData[i + 1];

               pixelData[i + 2] = (byte)~pixelData[i + 2];

            }

        }

 

        privatevoid EditColor_WashedOut(byte[] pixelData, int bytesPerPixel)

        {

            for (int i = 0; i <pixelData.Length; i += bytesPerPixel)

            {

                double gray =(pixelData[i] * 0.11) + (pixelData[i + 1] * 0.59) + (pixelData[i + 2] * 0.3);

                double desaturation =0.75;

               pixelData[i] = (byte)(pixelData[i] + desaturation * (gray - pixelData[i]));

                pixelData[i + 1] = (byte)(pixelData[i + 1] +desaturation * (gray - pixelData[i + 1]));

               pixelData[i + 2] = (byte)(pixelData[i + 2] + desaturation * (gray - pixelData[i +2]));

            }

        }

 

        privatevoid EditColor_HighSaturation(byte[] pixelData, int bytesPerPixel)

        {

            for (int i = 0; i <pixelData.Length; i += bytesPerPixel)

            {

                if (pixelData[i] < 0x33 ||pixelData[i] > 0xE5)

                {

                   pixelData[i] = 0x00;

                }

                else

                {

                   pixelData[i] = 0Xff;

                }

 

                if (pixelData[i + 1] < 0x33|| pixelData[i + 1] > 0xE5)

                {

                   pixelData[i + 1] = 0x00;

                }

                else

                {

                   pixelData[i + 1] = 0Xff;

                }

 

                if (pixelData[i + 2] < 0x33|| pixelData[i + 2] > 0xE5)

                {

                   pixelData[i + 2] = 0x00;

                }

                else

                {

                   pixelData[i + 1] = 0Xff;

                }

            }

        }

 

        public MainWindow()

        {

           InitializeComponent();

            // Action according to the app start or stop

            this.Loaded += (sender, e) =>DiscoverKinectSensor();

            this.Unloaded += (s, e) => this.kinect = null;

        }

 

        privatevoid DiscoverKinectSensor()

        {

            KinectSensor.KinectSensors.StatusChanged+= KinectSensors_StatusChanged;

            this.Kinect = KinectSensor.KinectSensors.FirstOrDefault(x=> x.Status == KinectStatus.Connected);

        }

 

        // Monitor Kinect Sensor status, get the first one if it'sconnected, remove if it's disconnected.

        privatevoid KinectSensors_StatusChanged(object sender, StatusChangedEventArgs e)

        {

            switch (e.Status)

            {

                caseKinectStatus.Connected:

                    if (null == this.kinect)

                   {

                       this.kinect= e.Sensor;

                   }

                    break;

                caseKinectStatus.Disconnected:

                    if (this.kinect == e.Sensor)

                    {

                       this.kinect= null;

                       this.kinect= KinectSensor.KinectSensors.FirstOrDefault(x => x.Status == KinectStatus.Connected);

                       if (this.kinect == null)

                       {

                           // Message to show that all kinects weredisconnected.

                       }

                   }

                    break;

            }

        }

 

效果演示

翻转:

灰化:

黑白:

血腥:

冲洗:

饱和:

 

这篇关于Kinect for windows 开发入门 五:彩色数据获取和使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1054996

相关文章

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringMVC获取请求参数的方法

《SpringMVC获取请求参数的方法》:本文主要介绍SpringMVC获取请求参数的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下... 目录1、通过ServletAPI获取2、通过控制器方法的形参获取请求参数3、@RequestParam4、@

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

Python虚拟环境终极(含PyCharm的使用教程)

《Python虚拟环境终极(含PyCharm的使用教程)》:本文主要介绍Python虚拟环境终极(含PyCharm的使用教程),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录一、为什么需要虚拟环境?二、虚拟环境创建方式对比三、命令行创建虚拟环境(venv)3.1 基础命令3

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

关于pandas的read_csv方法使用解读

《关于pandas的read_csv方法使用解读》:本文主要介绍关于pandas的read_csv方法使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录pandas的read_csv方法解读read_csv中的参数基本参数通用解析参数空值处理相关参数时间处理相关

使用Node.js制作图片上传服务的详细教程

《使用Node.js制作图片上传服务的详细教程》在现代Web应用开发中,图片上传是一项常见且重要的功能,借助Node.js强大的生态系统,我们可以轻松搭建高效的图片上传服务,本文将深入探讨如何使用No... 目录准备工作搭建 Express 服务器配置 multer 进行图片上传处理图片上传请求完整代码示例

SpringBoot条件注解核心作用与使用场景详解

《SpringBoot条件注解核心作用与使用场景详解》SpringBoot的条件注解为开发者提供了强大的动态配置能力,理解其原理和适用场景是构建灵活、可扩展应用的关键,本文将系统梳理所有常用的条件注... 目录引言一、条件注解的核心机制二、SpringBoot内置条件注解详解1、@ConditionalOn